[image: image1.jpg]

[image: image2.jpg]

Table of contents
(clickable if in an editor)

Contents:

3Section 1 General description of "Netmist" benchmark

4Section 2 Netmist licensing and copyrights

6Section 3 Default workload. Similar op_mix to METADATA, (one active workload type)

8Section 4 How to build

8Section 5 Windows setup

10Section 7 Linux setup

10Section 8 How to setup environment for testing

12Section 9 How to run the benchmark

15Section 10 Examples of setups

18Section 11 Example of a non-rate-limited run the benchmark

19Section 12 Example from a rate-limited run the benchmark

20Section 13 Controlled shutdown and cleanup

20Section 14 Corporate firewalls and NATs

20Section 15 Power monitoring and external monitors

21Section 16 Common failures

22Section 17 Logs gone wild....

23Section 18 External vendor provided scripts, or executables:

Section 1 General description of "Netmist" benchmark

“Netmist" is a benchmark that is used to measure the maximum sustainable throughput that a file server can deliver. The benchmark is protocol independent. It will run over any version of NFS or SMB/CIFS, clustered file systems, object oriented file systems, local file systems, or any other POSIX compatible file system. Because this tool runs at the application system call level, it is file system type agnostic. This provides strong portability across operating systems, and file server systems. Netmist already runs on Linux, Windows XP, Vista, Windows 7, Windows Server 2008, Mac-OS-X, BSD, Solaris, AIX, and HP-UX, and can be used to test any of the files-system types that these systems offer.
Netmist is a throughput oriented benchmark. The workloads are a mixture of file meta-data and data oriented operations. There are default workloads provided, as well as a full mechanism for customizing each of the workloads. Netmist is fully multi-client aware, and is a distributed application that coordinates and conducts the testing across all of the client nodes that are used to test a file server.
The benchmark runs on a group of workstations and measures the performance of the file server that is providing files to the workstations. The workload consists of several typical file operations. The following is the current set of operations that are measured.

 read()
 read_file()

 mmap_read()
 read_random()

 write()
 write_file()

 mmap_write()
 write_random()
 Rmw()
 mkdir()

 unlink()

 append()

 lock()

 unlock()

 access()

 stat()

 chmod()

 readdir()
 copyfile()
 rename()
 statfs()
 pathconf()
The read() and write() operations are performing sequential I/O to the data files. The read_random() and write_random() perform I/O at random offsets within the files. Read_file and Write_file operate on whole files.
The results of the benchmark are:

1. Aggregate Ops/sec that the file server can sustain at requested, or peak load.

2. Average file operation latency in milli seconds.

3. Aggregate Kbytes/sec that the file server can sustain at requested, or peak load.

Section 2 Netmist licensing and copyrights
The freeware version of Netmist contains the same license as Iozone.org. The SPEC version of Netmist contains a proprietary license. Below is the freeware license.

 Author: Don Capps (capps@iozone.org)

 7417 Crenshaw

 Plano, TX 75025
 Copyright 2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 Don Capps
 License to freely use and distribute this software is hereby granted
 by the author, subject to the condition that this copyright notice

 remains intact. The author retains the exclusive right to publish
 derivative works based on this work, including, but not limited to,
 revised versions of this work.

 Universities, and research communities are hereby granted by the
 author, subject to the condition that this copyright notice remains
 intact, the right to use and distribute modified versions of this software
 providing that all modifications are clearly stated in the NOTICE file
 that will be provided with all derivative works. Any derivative works
 must also remain available for free. Attribution of the original authors
 and contributors must also remain intact.

 Trademarks. This License does not grant permission to use the trade

 names, trademarks, service marks, or product names of the Licensor,

 except as required for reasonable and customary use in describing the

 origin of the Work and reproducing the content of the NOTICE file.

 Disclaimer of Warranty. Unless required by applicable law or

 agreed to in writing, Licensor provides the Work (and each

 Contributor provides its Contributions) on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied, including, without limitation, any warranties or conditions

 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

 PARTICULAR PURPOSE. You are solely responsible for determining the

 appropriateness of using or redistributing the Work and assume any

 risks associated with Your exercise of permissions under this License.

 Limitation of Liability. In no event and under no legal theory,

 whether in tort (including negligence), contract, or otherwise,

 unless required by applicable law (such as deliberate and grossly

 negligent acts) or agreed to in writing, shall any Contributor be

 liable to You for damages, including any direct, indirect, special,

 incidental, or consequential damages of any character arising as a

 result of this License or out of the use or inability to use the

 Work (including but not limited to damages for loss of goodwill,

 work stoppage, computer failure or malfunction, or any and all

 other commercial damages or losses), even if such Contributor

 has been advised of the possibility of such damages.
Section 3 Default workload. Similar op_mix to METADATA, (one active workload type)
These file operations are combined to create the default workload. The percentage of each type of operation is currently:

read()

 10 % of workload

read_file() 0 % of workload

 mmap_read() 0 % of workload

read_random()
 8 % of workload

write()
 7 % of workload

write_file() 0 % of workload

 mmap_write() 0 % of workload
write_random() 2 % of workload
rmw() 1 % of workload

mkdir()
 2 % of workload

unlink()
 4 % of workload

append()
 3 % of workload

locking()
 6 % of workload

access()
 24 % of workload

stat()

 26 % of workload

chmod()
 2 % of workload

readdir()
 4 % of workload
 copyfile()
 0 % of workload

rename()
 0 % of workload
statfs()

 1 % of workload

pathconf() 0 % of workload
 The files and directories being accessed by the benchmark are selected using a uniform random distribution that encompasses all of the directories and files that are created by the benchmark.

Files are written as well as read with the various operations above. When a file is being written or read, the transfer size follows the following distribution.

 Write transfer size distribution

 Min size Max size Percent

 bytes bytes of total

 1 511 13

 512 1023 3

 1024 2047 7

 2048 4095 5

 4096 4096 11

 4097 8191 3

 8192 8192 30

 8193 16383 7

 16384 16384 5

 16385 32767 1

 32768 32768 6

 65536 65536 4

 98304 98304 2

 131072 131072 2

 262144 262144 1
 524288 524288 0

 Read transfer size distribution

 Min size Max size Percent

 bytes bytes of total

 1 511 3

 512 1023 1

 1024 2047 2

 2048 4095 1

 4096 4096 16

 4097 8191 6

 8192 8192 36

 8193 16383 7

 16384 16384 7

 16385 32767 2

 32768 32768 9

 65536 65536 4

 98304 98304 3

 131072 131072 2

 262144 262144 1
 524288 524288 0
The sizes above are logical transfer sizes. The client may decide to re-block these in order to follow the negotiated transfer size that was established between the client and the server.

Section 4 How to build
 If you type "make" it will list the known targets :-)

The current makefile supports AIX, BSD, HP-UX, Linux, Solaris, MacOS, VMware and Windows (Cygwin and SUA). So if you wish to build netmist on another platform then you will need to edit the makefile and add the target for your architecture. The current targets build and run fine on these platforms. :-) There are two executables and one shell script that are in the kit.

 The kit includes:

netmist.c

netmist.h

Netmist_Users_Guide.doc

Netmist_Quick_Start_Guide.doc

Netmist_2011_run_rules.doc

Makefile

mempool.c
future_direction

Example_dist

 netmist is the executable benchmark. The Netmist_Users_Guide is the full set of documentation that is currently available.

Section 5 Windows setup
· Install the Netmist source kit in the home directory.

· Build Netmist, using Microsoft visual studio C++ 2010 express. Select the netmist.sln file.

· Create the Netmist configuration file:
With your favorite editor: (edit a “clients” configuration file for Netmist)
Example: “clients”

Clientname=nv8 Username=DOMAIN]username Workdir=\\server\share\testdir Execpath=netmist Worklaod=METADATA Password=password
Clientname=nv6 Username=DOMAIN\username Workdir=\\server\share\testdir Execpath=netmist Workload=METADATA Password=password

where \\Server\share\testdir is an accessible, and Execpath=netmist is
the path to the executable. Server is the server that is exporting the file system to test.
For more details see the section on setting up the environment.

· Create a script to start the Netmist run:
Example: netmist_script.cmd

netmist -b 1g -B 1g -d 2 -g clients –N –G -K
For more details see the examples in this guide.

What to do if you must map a share before Netmist get started on the remote client. Simply create a netmist_pretest.cmd file on each participating client. If this file exists, then
it will get executed before Netmist starts testing. This is only needed, if one specified the Workdir= a path that is a mapped share, and not a UNC path.

Example:
In the netmist_pretest.cmd script, map the share:.

Netmist_pretest.cmd:

net use \\filer\vol /user:domain\\username password

Section 7 Linux setup
Linux setup for Netmist.

· /etc/sysctl.conf:
Increase max socket connections
net.core.somaxconn = 65536
net.ipv4.tcp_fin_timeout = 5

· /etc/hosts.allow
 sshd: ALL
· Create ssh passwords from all clients to all other clients, so that no
 password challenges will be needed for the testing.
· Mount all filesystems that will be used in the testing.
· Disable selinx (as this app needs to connect TCP sockets to all clients)
· Disable iptables. (as this app needs to connect TCP sockets to all clients)
· Install the Netmist source kit in the home directory.
· Build Netmist, using the standard “make” utility. Type make to list the supported targets.

· Create the Netmist configuration file:
With your favorite editor: (edit a “clients” configuration file for Netmist)
Example: “clients”

Clientname=nv8 Username= username Workdir=/tmp Execpath=netmist Worklaod=METADATA
Clientname=nv6 Username= username Workdir=/tmp Execpath=netmist Workload=METADATA

where /tmp is an accessible, and Execpath=netmist is the path to the executable.
· Create a script to start the Netmist run:
Example: netmist_script.sh

netmist -b 1g -B 1g -d 2 -g clients –N –G -K

Section 8 How to setup environment for testing

Each client must have all of its remote file systems mounted before the test begins. Each client must be able to execute a remote command "ssh" without any password prompting. Each client must be able to execute the "scp" command and copy results back to the workstation that is running the benchmark's controlling process. The controlling process will be on the workstation where you started the benchmark. For Windows, WMI must be configured. See the User’s Guide.
netmist must have a client configuration file that describes the clients. This file contains token delimited entries that are in the format:

 Clientname=client_Username=user Workdir=test_dir Execpath=path_to_netmist
 Workload=Workload
The client is the name of a client that is in the DNS space and can be contacted by the controlling process.
The user is the login name on this client.
The test_dir is the path, on the client, to a directory where the files and directories will be placed during the execution of the benchmark. It must be writable by the client.

The path_to_netmist is the absolute path, on the client, to the executable netmist.

The Workload must be one of the valid workloads below:

METADATA

BACKUP

VDS

VDA1*

VDA2*

HOMEFOLDERS

DATABASE

VDI
SWBUILD
USERDEF
*Note that VDA1 and VDA2 are subcomponents of the composite VDA workload, see the appendix in the Users Guide for details and an example of how to use VDA1 and VDA2 to run VDA.
Each of these workloads have their own distribution attributes. This includes unique attributes for op mix, transfer size mix and percent flushed.

You may specify the same client more than once, or you may specify a different client. For each line in this file a netmist process will be started.

Be very sure that you have any needed locking daemons running. HINT: lockd, statd. If you forget to have these running then the benchmark will hang waiting on its first locking operation to complete.

The primary configuration file format is token based. This is activate with the –g filename option.
The token based configuration file takes similar inputs as the space delimited version above. The tokens are:

· Clientname=

· Username=

· Workdir=

· Execpath=

· Workload=

Other optional tokens and values that are not in the space delimited format

· Oprate=10
· Instances=
· Password=
Example: -g token_file
Clientname=Box1 Username=capps Workdir=/test Execpath=/test /netmist Workload=METADATA Oprate=10
Note: Currently all clients must have the same amount of RAM, as there is only one –b value and it is used to represent all of the clients. This may change in the future…..
Section 9 How to run the benchmark
 netmist:

 Command line options:

 [-t #]
Seconds to run

 [-w #]
Seconds to warm-up

 [-r #]
Record size in Kbytes (deprecated)

 [-b #[mMgGtT]] .
Client memory size in [mMgGtT]ibBytes

 [-B #[mMgGtT]]
Minimum adjustable aggregate data set size in [mMgGtT]ibBytes

 [-O #]
Request op/sec rate
 [-N] ……………. Enable op latency and latency banding reporting

 [-q heartbeat_log] Log all heartbeats to this file.

 [-Q #]
Number of files per directory. Default = 100

 [-T #]
Number of directories per proc. Default = 10
 [-g token_filename] Path to the file that contains the configuration information.

 [-G] ……………. Enable heartbeat notifications.
 [-i]
Information without run

 [-d #]
Number of processes/client

 [-k]
Kill the testing on all clients

 [-v]
Version information

 [-D]
Install benchmark on clients.

 [-H]
Hostname of PIT service

 [-S]
Service name of PIT service.

 [-E]
Export the current distribution info to stdout

 [-I name]...............
Filename of file with distribution info

 [-F]
Disable all fsync() calls.
 [-l logname] …… Send copy of output to a logfile.

 [-U log_path] …. Directory path, on client, for client logs.

 [-K] ………….. Disable unlink of files created by this run.
 [-h]
Help menu
 [-y 6]
Use IPv6 for client communication.
The –t # option permits one to specify the minimum time each client will perform testing (in seconds). The actual runtime may be greater than this amount of time if the benchmark determines that it needs to run longer so that the caches can be defeated. The runtime automatically scales to match the environment.

The –w # option permits one to specify how long each client will perform a warmup phase before testing. (in seconds) The default is 300 seconds if the –w option is not specified.

The –r # option permits one to specify the transfer size that will be used for reading, writing, and appending to files. It is in Kbytes. (This has been deprecated, because a transfer size

 distribution table is now being used. So you can skip this one.)

The –b # option permits one to specify the amount of memory that is in the client. It is in Gigabytes.

The –B # option permits one to specify the adjustable aggregate data set size. The auto-scaling mechanism will automatically scale the minimum aggregate data set size so as to compensate for the client caches. This option permits one to increase the minimum aggregate data set size to a specific value. This option is in Gigabytes. If one wishes to have each successive load point touch a larger aggregate data set, this is the variable that one can use to make that happen. (Note: Traditional SPEC METADATA scales the aggregate data set size with the requested op/sec. If one wishes to have that behavior, simply scale the value of –B)
The –O # sets the request ops/sec rate for this test. If the request rate is higher than the system supports, then the actual rate will be limited by the system. The benchmark will attempt to issue requests at the specified rate, but may only drive up the latency if the system is not capable of satisfying the requests at this rate.
The –N option enables op latency and latency banding reporting. This may create side effects if
the client is running inside of a virtual machine due to the higher number of calls to get the
high resolution timers, that may not be all that “high resolution” inside of a virtual machine.
The -q heartbeat_log permits the user the ability to log all of the heartbeat messages from all of the client processes. This can be used to demonstrate the stability of the op rate during the tests.

The -Q # sets the number of files in the leaf node directories. The default is 100.

The -T # sets the number of directories per processes The default is 10.
The –g Token_filename option permits the user to specify the token based client configuration file.
The –G option enables heartbeat notifications. This is useful if one is tracking progress from
an external harness.
The –i option permits the user to run the benchmark to obtain information about what would be tested if the benchmark were to actually run. (Think of make –n) This is handy for providing information about

data set sizes and such before one starts the actual run of the benchmark on a system that does not have the needed resources.

The –d option permits one to specify the number of processes that are in the client configuration file that are actually on the same physical client. Netmist will use this information to perform the auto-scaling so that the client’s memory is exceeded by the aggregate of processes on the client and not by every

 process on the client.

Ex. A client_filename with the following entries

Clientname=Client_1 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Clientname=Client_1 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Clientname=Client_1 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Requires –d # of 3, since Client_1 is entered 3 times and we wish to have one process per entry.

 Ex. A client_filename with the following entries
Clientname=Client_1 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Clientname=Client_2 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Clientname=Client_3 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Require a –d # of 1, since we wish to have one process per entry.

The –k option is the “Help me shut this monster down NOW option. It is handy if something went very wrong during a run. For example, a network cable fell out. The normal controlled shutdown process, Control-C, has failed and now you really need to get all of those clients back to a sane state.

The –v option permits one to see the version of netmist being used.

The –D option installs the benchmark on the clients listed in the client_filename file. You must have compiled before you use this.

The –H hostname option permits the use of an external timer. This interfaces with the PIT time server from Iozone. The use of an external timer can be very handy, if the timer resolution is unstable, such as in SUA, or inside of a virtual machine.

The –S Servicename option permits the use of an external timer. This interfaces with the PIT time server from Iozone. The Servicename should be listed in /etc/services.

 Example PIT tcp port 2010.

 PIT
 2010/tcp
Programmable Inter-dimensional Timer

The –E option exports the current op distribution to standard out. One can redirect this to a file, and later use this file as a template for custom distribution runs.

The –I filename option imports the op distribution from the filename specified. This file has the distribution specified in the identical format as that of the –E export option.

The –F option disables calls to fsync(), which normally happen after every three writes.
The –l log_file is for logging of the output to a log file.

The –U directory_path option permits one to specify, on the clients, the path they
will use for their logs.

The –K option disables the unlinking of files from this run. This is used so that the
next load point can reuse the existing files from the previous load point.
The –h option permits one to see the help menu.
The –y 6 option permits one to use IPv6 networking for client communication.
Section 10 Examples of setups
 --

 No rate limit... find the maximum this box can handle ?

 --

 netmist -d 1 -b 1g -B 1g -g client_list

 One process per client.

 Client has 1 GiBytes of memory

 Adjustable aggregate data set size 1 GiBytes
 Run the test for 300 seconds.

 Warmup phase for 300 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp Execpath=/tmp/netmist Workload=METADATA
 The client is named "client1"
 The user is named “root”
 The directory for the data files is /tmp on client1

 The executable for the benchmark is at /tmp/netmist on client1

 The workload is METADATA
 --

 --

 Op rate limited... looking for latency at different loads.

 --

 netmist -d 1 -b 1g -B 1g -O 1000 -g client_list

 One process per client.

 Client has 1 GiBytes of memory

 Adjustable aggregate data set size 1 GiBytes
 The requested ops/sec rate is 1000

 Run the test for 300 seconds.

 Warmup phase for 300 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp Execpath=/tmp/netmist Workload=METADATA
 The client is named "client1"
 The user is named “root”
 The directory for the data files is /tmp on client1

 The executable for the benchmark is at /tmp/netmist on client1

 The workload is METADATA

 Op rate limited... looking for latency at different loads. (2 procs)

 netmist -d 2 -b 1g -B 1g -O 1000 -t 600 -w 300 -g client_list

 Two processes per client.

 Client has 1 GiBytes of memory

 Adjustable aggregate data set size 1 GiBytes
 The requested ops/sec rate is 1000

 Run the test for 600 seconds.

 Warmup phase for 300 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp Execpath=/tmp/netmist Workload=METADATA
 Clientname=client1 Username=root Workdir=/tmp Execpath=/tmp/netmist Workload=METADATA
 The client is named "client1"
 The user is named “root”
 The directory for the data files is /tmp on client1

 The executable for the benchmark is at /tmp/netmist on client1

 The workload is METADATA, for all processes

 --

 --

 Op rate limited... looking for latency at different loads. (2 Clients)

 --

 netmist -d 1 -b 1g -B 1g -O 1000 -t 600 -w 600 -g client_list

 One processes per client.

 Clients have 1 GiBytes of memory

 Adjustable aggregate data set size 1 GiBytes
 The requested ops/sec rate is 1000

 Run the test for 600 seconds.

 Warmup phase for 600 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 Clientname=client2 Username=root Workdir=/tmp2 Execpath=/tmp/netmist Workload=METADATA
 The clients are named "client1" and "client2"
 The user is named “root”
 The directory for the data files is /tmp1 on client1

 The directory for the data files is /tmp2 on client2

 The executable for the benchmark is at /home/user/netmist on client1

 The executable for the benchmark is at /home/user/netmist on client2

 The workload is METADATA, for all processes

 --

 --

 Op rate limited... looking for latency at different loads. (2 Clients)

 with 2 procs on each client.

 --

 netmist -d 2 -b 1g -B 1g -O 1000 -t 600 -w 600 -g client_list

 Two processes per client.

 Clients have 1 GiBytes of memory

 Adjustable aggregate data set size 1 GiBytes
 The requested ops/sec rate is 1000

 Run the test for 600 seconds.

 Warmup phase for 600 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 Clientname=client2 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 Clientname=client1 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 Clientname=client2 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 The clients are named "client1" and "client2"
 The user is named “root”
 The directory for the data files is /tmp1 on client1 and client2
 The executable for the benchmark is at /home/user/netmist on client1

 The executable for the benchmark is at /home/user/netmist on client2

 The workload is METADATA, for all processes

Note: You need to remove the client_#_results files if you change the configuration file and run the benchmark again.

Note: The benchmark enforces a minimum runtime so that the data set is used. If insufficient data has been touched then the benchmark will terminate with an error and tell the user to increase the run time
Section 11 Example of a non-rate-limited run the benchmark

 | Networked Maximum I/O Sustained Throughput: Netmist_2011 |

 Netmist $Revision: 1.243 $
 Test run time = 300 seconds, Warmup = 300 seconds.

 Running 10 copies of the test on 5 clients

 Results directory: /mnt/fas2020/netmist_dir

 Clients have a total of 5 GiBytes of memory

 Clients have 512 MiBytes of memory size per process

 Clients each have 2 processes

 Adjustable aggregate data set size 1 GiBytes
 Each process file size
 = 528 kbytes

 Client data set size
 = 5156 MiBytes

 Total active data set size
= 25781 MiBytes

 Total initial file space
= 25781 MiBytes

 Total max file space
= 30937 MiBytes

 Starting tests: Sat Jan 8 11:30:07 2011

 Launching 10 clients.

 Starting test on -> nv3 <- Client ID 0

 Starting test on -> nv5 <- Client ID 1

 Starting test on -> nv7 <- Client ID 2

 Starting test on -> lab <- Client ID 3

 Starting test on -> nv1 <- Client ID 4

 Starting test on -> nv3 <- Client ID 5

 Starting test on -> nv5 <- Client ID 6

 Starting test on -> nv7 <- Client ID 7

 Starting test on -> lab <- Client ID 8

 Starting test on -> nv1 <- Client ID 9

 Waiting to finish initialization.
Sat Jan 8 11:30:26 2011

 Initialization finished:

Sat Jan 8 11:40:23 2011

 Testing begins:

Sat Jan 8 11:40:23 2011

 Waiting for tests to finish. Sat Jan 8 11:40:33 2011

 Sat Jan 8 11:50:36 2011
10 percent complete

 Sat Jan 8 11:55:26 2011
20 percent complete

 Sat Jan 8 12:00:37 2011
30 percent complete

 Sat Jan 8 12:05:37 2011
40 percent complete

 Sat Jan 8 12:10:48 2011
50 percent complete

 Sat Jan 8 12:15:38 2011
60 percent complete

 Sat Jan 8 12:20:49 2011
70 percent complete

 Sat Jan 8 12:25:49 2011
80 percent complete

 Sat Jan 8 12:30:50 2011
90 percent complete

 Tests finished:

Sat Jan 8 12:38:48 2011

 Overall average latency 3.48 Milli-seconds
 Overall Ops/sec 2873.00 Ops/sec
 Overall Read_throughput 46434.34 Kbytes/sec

 Overall Write_throughput 45954.82 Kbytes/sec

 Overall throughput 92389.16 Kbytes/sec
Section 12 Example from a rate-limited run the benchmark

 | Networked Maximum I/O Sustained Throughput: Netmist_2011 |

 Netmist $Revision: 1.243

 Test run time = 300 seconds, Warmup = 300 seconds.

 Request Op_rate = 2500 ops/second

 Running 10 copies of the test on 5 clients

 Results directory: /mnt/fas2020/netmist_dir

 Clients have a total of 5 GiBytes of memory

 Clients have 512 MiBytes of memory size per process

 Clients each have 2 processes

 Adjustable aggregate data set size 1 GiBytes
 Each process file size = 528 kbytes

 Client data set size = 5156 MiBytes

 Total active data set size = 25781 MiBytes

 Total initial file space = 25781 MiBytes

 Total max file space = 30937 MiBytes

 Starting tests: Sun Jan 9 10:18:57 2011

 Launching 10 clients.

 Starting test on -> nv3 <- Client ID 0

 Starting test on -> nv5 <- Client ID 1

 Starting test on -> nv7 <- Client ID 2

 Starting test on -> lab <- Client ID 3

 Starting test on -> nv1 <- Client ID 4

 Starting test on -> nv3 <- Client ID 5

 Starting test on -> nv5 <- Client ID 6

 Starting test on -> nv7 <- Client ID 7

 Starting test on -> lab <- Client ID 8

 Starting test on -> nv1 <- Client ID 9

 Waiting to finish initialization. Sun Jan 9 10:19:17 2011

 Initialization finished: Sun Jan 9 10:29:22 2011

 Testing begins: Sun Jan 9 10:29:22 2011

 Sun Jan 9 10:40:26 2011 10 percent complete

 Sun Jan 9 10:46:06 2011 20 percent complete

 Sun Jan 9 10:51:56 2011 30 percent complete

 Sun Jan 9 10:57:57 2011 40 percent complete

 Sun Jan 9 11:03:58 2011 50 percent complete

 Sun Jan 9 11:09:48 2011 60 percent complete

 Sun Jan 9 11:15:39 2011 70 percent complete

 Sun Jan 9 11:21:29 2011 80 percent complete

 Sun Jan 9 11:27:20 2011 90 percent complete

 Tests finished: Sun Jan 9 11:34:58 2011

 --

 Overall average latency 3.05 Milli-seconds
 Overall Ops/sec 2473.00 Ops/sec
 Overall Read_throughput 53074.83 Kbytes/sec

 Overall Write_throughput 52527.20 Kbytes/sec

 Overall throughput 105602.04 Kbytes/sec

Section 13 Controlled shutdown and cleanup

Normally the benchmark runs to completion and each client removes their data sets. In the event that something goes wrong, the user may enter control-C. This will tell the controlling process that it needs to communicate with all of the clients and tell them to shutdown and cleanup. In the event that the communication fails (network outage) then the user can run the same test again but, this time add the -k flag. This will find all of the clients and get them to cleanup and shutdown the benchmark. (if the network is back up) In the event that a client gets an error it will automatically inform the controlling process. The controlling process will then inform the user as to the nature of the error and then conduct a graceful shutdown of the benchmark.

Section 14 Corporate firewalls and NATs
 It is unlikely that one will be able to run netmist in such a way as to control multiple workstations that are outside of a corporate firewall and have the controlling process be running inside the corporate firewall.

This is because netmist uses dynamically allocated TCP ports in the range of 20,000 to 30,000. These ports may be blocked by a corporate firewall. Also running netmist behind a NAT'ed connection is unlikely to work due to the dynamic allocation of ports. It was not the author's lack of foresight that causes these constraints but rather the lack of knowledge, time, and motivation to make it work under these situations.

Section 15 Power monitoring and external monitors

 Netmist has facilities to run external scripts. There are two basic forms that are implemented. The first is the extern power monitor script. This script is named “netmist_power.sh”. If this script exists and is executable then it will be called twice. The first time the power script is called it is before any testing has started. The script is handed an option “Baseline”. This is so the external power script will take a measurement before any load is present. The second time the power script is called is when the load is actively running. This is to facilitate the measurement of power under the requested load.
 The second form of script is an external monitor script. This script is named “netmist_mon.sh”. If this script exists and is executable then it will be called three times. The first is just before the initialization phase. The second is just before the warmup and run phases, and the third is when the test is complete. On Windows platforms, the scripts end with .cmd instead of .sh

 Both of these external monitors are only executed by the controlling instance of Netmist.

Section 16 Common failures

1. If you do not have the lock manager running the test will hang.

2. The software validates that all clients are running the same version of the software. If they are not then the test will terminate with a message that informs the user of the situation.

3. If you have insufficient disk space then the benchmark will terminate and inform the user of the error.

4. If the run time was too short to touch the aggregate data set then the benchmark will terminate and inform the user of the situation.

5. If the client thinks his name is something different than what was provided in the client_file then the controlling process will not be able to communicate with the client.

Section 17 Logs gone wild....

There are several interesting log files that one might wish to examine. There are log files for each child process that store statistics and are later used to produce the overall result. These files are created in the top level of the test directory, and are later copied to the working directory.

These logs begin with "client_". These logs look like this:

Client 8 results:

Client process has 110 initialized directories with a total of 11000 initialized files.

Client process total active data space = 1718 MiBytes

Client memory size = 5 GiBytes

Adjustable aggregate data set size = 1 GiBytes

Warmup time 300 seconds.

1461323 total logical ops. File size 352 kbytes, Record size 13 kbytes. Runtime 6112 seconds

Read throughput = 43626 kbytes/sec. Read 1894919 kbytes total.

Read rand throughput = 42718 kbytes/sec. Read 2722984 kbytes total.

Write throughput = 45039 kbytes/sec. Write 352146 kbytes total.

Write rand throughput = 45033 kbytes/sec. Write 355311 kbytes total.

Append throughput = 45034 kbytes/sec. Write 354535 kbytes total.

Mon Jan 3 14:21:04 2011

Ops distribution:

 Read ops

= 145961
 Read file ops
= 0

 Mmap read ops = 0
 Read rand file ops = 204469

 Write ops

= 44000
 Write file ops
= 0

 Mmap write ops = 0
 Write rand file ops = 43448
 Rmw ops = 8348
 Mkdir ops
= 29129

 Unlink ops
= 58829

 Append file ops
= 44236

 Lock ops
= 87299

 Access ops
= 350979

 Stat ops
= 365789

 Chmod ops
= 29649

 Readdir ops
= 59660
 Copyfile ops
= 0
 Rename ops
= 0

 Statfs ops
= 365
 Total file ops
= 2791173

 Average latency
= 2.188 milli seconds

Section 18 External vendor provided scripts, or executables:
netmist_mon.sh or netmist_mon.cmd

If this shell script, or executable, exists in the current working directory where the first instance of Netmist was started then it will be executed at the following points in the run:

· At the beginning of the INIT phase and is passed “INIT” as an argument.

· At the beginning of the RUN phase and is passed “RUNNING” as an argument.

· At the end of the test phase and is passed “STOP” as an argument.

The purpose of this plug-in script is to provide a method of triggering external
monitoring that consumer may wish to automation with Netmist.

netmist_power.sh or netmist_power.cmd
If this shell script, or executable, exists in the current working directory where the first instance of Netmist was started, then it will be executed at the following points in the run:

· Before any testing begins. So that an idle baseline of power consumption can be taken.

· When the test is 70% of the way through the RUN phase. So that the power consumption may be measured under the current load.

netmist_stat.sh or netmist_stat.cmd
This script, or executable, is required for a compliant submission and is supplied by the vendor
This script, or executable, must exist and be located in the current working directory where the first instance of Netmist was started, then it will be executed at the following points in the run:
· At the beginning of the RUN phase and is passed “ZERO” as an argument. This is so that an external set of statistical counters may be reset to zero, if needed.

· At the end of the test, and is passed “STOP”, so an external set of statistical counters may be collected.
Minimum collection of the following statistical values for compliance.
 Logical IP layer:

· Total IP packets sent and received
· Total IP Bytes sent and received
 Physical network layer:
· Total network packets sent and received
· Total network Bytes sent and received
 Filesystem protocol layer:

· All server side statistics and counters for all protocol specific information that is collected when the load is presented at the client.
Information that is to be collected.
 Op_name Number of ops

· Op_name (protocol & vendor dependent) Op_count
· Op_name (protocol & vendor dependent) Op_count

· Op_name (protocol & vendor dependent) Op_ocunt

· ……

The purpose of collecting these counters is so that the user can understand how much of the work was handled by the client, and how much of the work was handled by the system under test.

Below is an example of each of each layer, and the counters that are to be collected and submitted with any compliant submission.

Example of the output from a netmist_stat.sh

IP statistics

IP Packets received: 7345670
IP Packets sent: 8582942
IP Bytes send: 13234563
IP Bytes received: 132498984
Physical Network specific statistics

Ethernet:

TX packets: 39266805
RX packets: 70579408
TX bytes: 4253153798
RX bytes: 3969437307
Protocol specific statistics

NFS statistics
Server nfs v3:
 Operation Count
 null

357

 getattr

6882

 setattr

252

 lookup

993

 access

928

 readlink

0

 read

83913

 write

33414

 create

276

 mkdir

5

 symlink

0

 mknod

0

 remove

63

 rmdir

12

 rename

0

 link

0

 readdir

1

 readdirplus
63

 fsstat

11691

 fsinfo

413

 pathconf
22

 commit

5790

�

 Netmist

 Networked Maximum I/O Sustained

 Throughput

 Quick Start Guide

Don Capps�Iozone.org

Created: March 1st, 2002

Ongoing development: 2014

