Portable Distributed Shared Memory
[image: image1.jpg]
By
Don Capps
Iozone.org
 The Portable Distributed Shared Memory (PDSM) mechanism is a cluster aware application that provides a transparent distributed shared memory environment for applications that need to periodically share information, such as counters, statistics, or other non-time critical pieces of information across nodes in a cluster with a controlling application.
It is envisioned that this service will be used by an application, or a set of applications, that need a generalized command and control system that can span a large number of nodes within a data center. The PDSM mechanism provides a bi-directional command and control system that appears to the applications to be a simple shared memory segment.

The implementation described below is very portable. It compiles and runs on Unix/Linux systems as well as Windows platforms. It runs on x86, Sparc, Parisc, and any other CPU type. It also runs on Big Endian, and Little Endian systems. There are no known architectural dependencies in the implementation.
PDSM is a distributed application that provides a shared memory service for other applications to use. There are two fundamental software components, the pdsm_master and the pdsm_remote.

The pdsm_master component provides the global view of information to and from all of the pdsm_remote nodes/clients.

The pdsm_remote component is responsible for any particular remote node and all of the information that is sent to, or received from, this remote node to the pdsm_master.

The pdsm_master component creates two public shared memory segments. The keys for these segments, and their sizes, are logged to /tmp/pdsm_master_registry. This is logged in a file so that other applications will be able to attach to these public segments and become part of the shared memory mechanism.

Example: (MO is the Master Owned segment, RO is the Remote Owned segment)

The file, /tmp/pdsm_master_registry contains:

 PDSM_MO_key 0x314158 PDSM_MO_size 8192 Number_of_segs 2 Seg_size 4096

 PDSM_RO_ key 0x314159 PDSM_RO_ size 8192 Number_of_segs 2 Seg_size 4096

The PDSM_MO segment is where the master writes information that is transparently copied to the remote nodes. The PDSM_RO segment is where the master places information that is received from the remote nodes.

The pdsm_remote component creates two public shared memory segments. The keys for these segments, and their sizes, are logged to /tmp/pdsm_registry_client_###. This information is logged in files so applications will be able to attach to these public segments and become part of the shared memory mechanism.

Example: (MO is the Master Owned segment, RO is the Remote Owned segment)

The file, /tmp/psm_registry_client_### contains:
PDSM_MO_key 0x314180 PDSM_MO_size 4096

PDSM_RO_ key 0x314181 PDSM_RO_ size 4096

The PDSM_MO segment is where data from the master is placed. The PDSM_RO segment is where the remote client places data that will be transparently copied to the master.

Both pdsm_master and pdsm_remote have multiple internal processes that are responsible for keeping all of the shared memory segments coherent across the nodes. Other applications that are using the PDSM mechanism do not need to assist in the coherency protocol, as this is all handled transparently by the pdsm_master and pdsm_remote components. The only exception is if there are multiple processes on the same node that are modifying the contents of a writable segment. In this case these processes need to coordinate their accesses between them. The internal coherency mechanism copies the data from the segments at a regular interval. The default is every 2 seconds. The copy mechanism is also optimized such that it will only send the data to the remote end of the circuit if the contents have changed. If nothing has changed, then no updates are transmitted.
The internal transparent copy across nodes converts all of the segment contents to network neutral format, and back. This reduces the possibility of architectural dependencies.

The drawing below demonstrates the relationship of the shared memory segments, and the internal processes that keep all of them coherent.

[image: image2.jpg]
The pdsm_master is responsible for distribution of any writes that happen in the master writable segments to the respective remote node shared memory segments. The pdsm_master is also responsible for collecting any changes from the remote node’s writable segments and placing these changes into the shared memory on the pdsm_master’s node. Likewise, the pdsm_remote component is responsible for distribution of any writes that happen in the remote writable segment and sending these changes to the pdsm_master node. Also, the pdsm_remote component is responsible for collecting any changes that are sent from the pdsm_master component to the local shared memory segment for the master’s writable segment.

 It is noteworthy to mention that all of the shared memory segments are public. Any process within the node can attach to the segments. If an application attaches to the pdsm_master’s segments, then any store operations into the master’s writable segment will appear in the master writable segment on the remote client, and will be visible to any other applications on this node that are also attached to the pdsm_master’s master writable segments, both on this node, and the remote node.
 If an application attaches to the pdsm_remote’s remote writable segment, then any store operations into the remote’s writable segment will appear in the remote’s writable segment on the pdsm_master node, and will be visible to any other applications on this node that are also attached to the pdsm_remote’s writable segment, or on the pdsm_master node in the corresponding remote writable segment.
Example:

A process on a remote node attaches to the pdsm_remote’s Remote writable segment and stores a value in this segment. This change will automatically be copied to the same offset within the master’s Remote writable segment for this remote node. All processes on this remote node can also see the changes in the same shared memory segment, and all processes on the master node can likewise see the changes to the corresponding remote writable segment for this node.

Example:

A process, running on the same node as the pdsm_master, attaches to the master’s writable segment and stores a value at an offset of the segment for a particular remote node. This value will be automatically copied to the remote node and placed, at the same offset within the segment, in the master’s writable segment on that node. Any process that is on the pdsm_master node, and attached to the master’s writable segment can see these changes, as well as any process running on the remote node and attached to the master’s writable segment on that node.
Real world example:

I started pdsm_remote on 8 nodes within Iozone.org, and started pdsm_master
on my laptop. The applications on the laptop can see the shared memory that is being modified by applications that are running on 8 nodes within the lab, and the applications on the laptop can send updates to the remote applications via what appears to be a simple shared memory store operation. The fact that I was on the road, and connected over a VPN (openvpn), over a 3G cellular connection was invisible to all of the applications involved. The systems involved continued to operate as though they were all running within the confines of one physical node. (Similar testing over a Cisco VPN with remote clients in a lab in California, and a mobile laptop while going down the road in Texas also worked as well.

[image: image3.jpg]

The pdsm_master component current implementation:

pdsm_master: [-h] [-r] [-p number] [-g config_file]
 [-h] help screen.

 [-r] Release of shared memory.

 [-p number]... Number of remotes. (deprecated in the future)
 [-s size].......... Size of shared memory in bytes.

 [-g filename] .. Name of the configuration file.

 [-y 6] … Use IPv6 for client communication.

-h …

Display the help screen.

-r …

Release the shared segments

-p number…
Specify the total number of remote clients that will exist. This option will be

deprecated. In the future this value will be determined from the

-g config file … see –g below.

-s size …
Specify the size of the shared memory segment. This is in bytes but

will be rounded up to a page size automatically.

-g filename.. Specify the name of the pdsm configuration file. Entries in this file
 are needed for each remote consumer. Entries are in the form of:

Clientname=name_of_remote_host

Clientname=name_of_remote_host

…

-y 6 .. Configure system to use IPv6 for client communication.

Example:

Clientname=Bazooka

Clientname=Cannon

The pdsm_remote component current implementation:

pdsm_remote: [-h] [-H Master_hostname] [-n client_id] [-r]

 [-h].................................. Help screen

 [-H Master_hostname].... Hostname of the master.

 [-n client_id]................... Unique client identifier.

 [-s]................................... Size of shared memory in bytes.

 [-r]................................... Release shared memory.
 [-y 6] …………………. Use IPv6 configuration.

-h …

Display the help screen.

-H hostname
Specify the hostname of the psm_master node.

-n client_id
Specify the client ID (0 through N-1) for this client.

-s size …
Specify the size of the shared memory segments. This is in bytes but

will be rounded up to a page size automatically.

-r …

Release the share memory segments.

-y 6 Use IPv6 configuration.

