[image: image1.jpg]
[image: image29.jpg]

[image: image30.jpg]

Table of contents
(clickable if in an editor)

Contents:

3Section 1 General description of "Netmist" benchmark

5Section 2 Netmist licensing and copyrights

7Section 3 Default workload. Similar op_mix to METADATA, with one workload active.

9Section 4 Directory structure

14Section 5 Auto-scaling

14Section 6 Synchronization mechanisms

14Section 7 Controlled shutdown and cleanup

15Section 8 How to build

15Section 9 How to setup environment for testing

17Section 10 How to run the benchmark

24Section 11 Custom workloads

28Section 12 Example of the "info" output

29Section 13 Example from a non-rate-limited run the benchmark

30Section 14 Example from a rate-limited (-O 2500 ops/sec) run the benchmark

31Section 15 Screenshots

46Section 16 Corporate firewalls and NATs

46Section 17 Power monitoring and external monitors

47Section 18 Common failures

48Section 19 Logs gone wild....

53Section 20 Latency reporting and histogram bands

56Section 21 External vendor provided scripts, or executables:

60Section 22 (contact info) Iozone.org

62Appendix:

62Workload descriptions

92Using the native Windows version:

93Linux setup for Netmist.

94Internal data structures and design information.

Section 1 General description of "Netmist" benchmark

“Netmist" is a benchmark that is used to measure the maximum sustainable throughput that a file server can deliver. The benchmark is protocol independent. It will run over any version of NFS or SMB/CIFS, clustered file systems, object oriented file systems, local file systems, or any other POSIX compatible file system. Because this tool runs at the application system call level, it is file system type agnostic. This provides strong portability across operating systems, and file server systems. Netmist already runs on Linux, Windows XP, Vista, Windows 7, Windows Server 2003, Windows Server 2008, Mac-OS-X, BSD, Solaris, AIX, and HP-UX, and can be used to test any of the files-system types that these systems offer.

There are two Netmist products that are in development. The first is the freeware version that is made available by the Iozone.org team. The second is a commercial version of Netmist that is distributed by SPEC. (Standard Performance Evaluation Corporation). The commercial version has features that are not available in the freeware version. These extra features are targeted towards the commercial users that will be testing large scale storage systems and publishing competitive results on the SPEC web site.

Netmist is a throughput oriented benchmark. The workloads are a mixture of file meta-data and data oriented operations. There are default workloads provided, as well as a full mechanism for customizing each of the workloads. Netmist is fully multi-client aware, and is a distributed application that coordinates and conducts the testing across all of the client nodes that are used to test a file server.
The benchmark runs on a group of workstations and measures the performance of the file server that is providing files to the workstations. The workload consists of several typical file operations. The following is the current set of operations that are measured.

 read()
 read_file()

 mmap_read()
 read_random()

 write()
 write_file()

 mmap_write()
 write_random()
 rmw()
 mkdir()

 unlink()

 append()

 lock()

 unlock()

 access()

 stat()

 chmod()

 readdir()
 statfs()
 copyfile()

 rename()
 pathconf()
The read() and write() operations are performing sequential I/O to the data files. The read_random() and write_random() perform I/O at random offsets within the files. The read_file and write_file operate in whole files. Rmw is a read_modify_write operation.
The results of the benchmark are:

1. Aggregate Ops/sec that the file server can sustain at requested or peak load.

2. Average file operation latency in milli seconds.

3. Aggregate Kbytes/sec that the file server can sustain at requested or peak load.

Section 2 Netmist licensing and copyrights
The freeware version of Netmist contains a license that is the same as Iozone. It is intended to make the software available for free and to also protect the integrity of the benchmark. The commercial version of Netmist from SPEC is a proprietary software package and contains the standard SPEC license.

The freeware version has the following license.
 Author: Don Capps (capps@iozone.org)

 7417 Crenshaw

 Plano, TX 75025
 Copyright 2002,2003,2004,2005,2006,2007,2008,2009,2010,2011 Don Capps
 License to freely use and distribute this software is hereby granted
 by the author, subject to the condition that this copyright notice

 remains intact. The author retains the exclusive right to publish
 derivative works based on this work, including, but not limited to,
 revised versions of this work.

 Universities, and research communities are hereby granted by the
 author, subject to the condition that this copyright notice remains
 intact, the right to use and distribute modified versions of this software
 providing that all modifications are clearly stated in the NOTICE file
 that will be provided with all derivative works. Any derivative works
 must also remain available for free. Attribution of the original authors
 and contributors must also remain intact.

 Trademarks. This License does not grant permission to use the trade

 names, trademarks, service marks, or product names of the Licensor,

 except as required for reasonable and customary use in describing the

 origin of the Work and reproducing the content of the NOTICE file.

 Disclaimer of Warranty. Unless required by applicable law or

 agreed to in writing, Licensor provides the Work (and each

 Contributor provides its Contributions) on an "AS IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

 implied, including, without limitation, any warranties or conditions

 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A

 PARTICULAR PURPOSE. You are solely responsible for determining the

 appropriateness of using or redistributing the Work and assume any

 risks associated with Your exercise of permissions under this License.

 Limitation of Liability. In no event and under no legal theory,

 whether in tort (including negligence), contract, or otherwise,

 unless required by applicable law (such as deliberate and grossly

 negligent acts) or agreed to in writing, shall any Contributor be

 liable to You for damages, including any direct, indirect, special,

 incidental, or consequential damages of any character arising as a

 result of this License or out of the use or inability to use the

 Work (including but not limited to damages for loss of goodwill,

 work stoppage, computer failure or malfunction, or any and all

 other commercial damages or losses), even if such Contributor

 has been advised of the possibility of such damages.
Section 3 Default workload. Similar op_mix to METADATA, with one workload active.
These file operations are combined to create the default workload. The percentage of each type of operation is currently:

read()

 10 % of workload

read_file()
 0 % of workload

 mmap_read()
 0 % of workload

read_random()
 8 % of workload

write()
 7 % of workload

write_file() 0 % of workload
 mmap_write() 0 % of workload
write_random() 2 % of workload
rmw()

 1 % of workload

mkdir()
 2 % of workload

unlink()
 2 % of workload
create()
 2 % of workload

append()
 3 % of workload

locking()
 6 % of workload

access()
 24 % of workload

stat()

 26 % of workload

chmod()
 2 % of workload

readdir()
 4 % of workload
 copyfile() 0 % of workload

rename() 0 % of workload

 statfs() 1 % of workload

 pathconf() 0 % of workload
 The files and directories being accessed by the benchmark are selected using a uniform random distribution that encompasses all of the directories and files that are created by the benchmark.

Files are written as well as read with the various operations above. When a file is being written or read, the transfer size follows the following distribution.

 Write transfer size distribution

 Min size Max size Percent

 bytes bytes of total

 1 511 13

 512 1023 3

 1024 2047 7

 2048 4095 5

 4096 4096 11

 4097 8191 3

 8192 8192 30

 8193 16383 7

 16384 16384 5

 16385 32767 1

 32768 32768 6

 65536 65536 4

 98304 98304 2

 131072 131072 2

 262144 262144 1
 524288 524288 0

 Read transfer size distribution

 Min size Max size Percent

 bytes bytes of total

 1 511 3

 512 1023 1

 1024 2047 2

 2048 4095 1

 4096 4096 16

 4097 8191 6

 8192 8192 36

 8193 16383 7

 16384 16384 7

 16385 32767 2

 32768 32768 9

 65536 65536 4

 98304 98304 3

 131072 131072 2

 262144 262144 1
 524288 524288 0
The sizes above are logical transfer sizes. The client may decide to re-block these in order to follow the negotiated transfer size that was established between the client and the server.

Section 4 Directory structure

Each process on a workstation that is participating in the measurement creates its own directory structure that consists of 10 directories, each with 20 subdirectories for the file operation type, and each of these subdirectories with 100 files. The directory tree is 3 levels deep. Eight file operation types will contain file data. Read, write, read_random write_random, and append. The other file operations contain no file data but places for files to be removed and directories to be created and removed. All of the directories and file data are initialized by the clients before the measurement begins.

The file layout structure for the benchmark is shown below:
[image: image2.jpg]
Note: If sharing mode is enabled (-X) then all processes share the same directory structure and files that were created by the first client process. This is used for shared file environments, such as database environments. Sharing may also be enabled via a workload object attribute. (Sharemode) The –X option will enable sharing for the specified workload objects. The Sharemode attribute enables directory and file sharing for only those objects that have the Sharemode attribute enabled.
In default mode, the directory structure is created such that each client process has it’s own top level directory ,sub directories and file.. For example, with 3 processes using the METADATA workload object, the top level directories would be CL0_METADATA, CL1_METADATA, and CL2_METADATA. Each client process is working with it’s own files and there is not file or directory sharing.

Directory structure in ShareMode

[image: image3.jpg]
In Sharemode, the directory structure is created such that all client processes that are using the same workgroup object will share the same directory structure, sub-directories and files. For example, with two client processes that are using the STREAM_VOD and METADATA, the top level directories will be SM_STREAM_VOD and SM_METADATA. In Sharemode, all of the directories under the top level directory are shared by all client processes that are using the same workload object type. It is important that the user setup all of the client mounts, such that the specified “workdir” is in the same storage area across all clients.

File and directory layout from another perspective:
[image: image4.jpg]
The user may desire to have a distribution of file sizes. This can be accomplished by setting the uniform_size_dist value, in the workload object, to 0 (zero). This will create a normal/Gaussian distribution of file sizes. If the value of uniform_file_size_dist is set to 1, then all of the files will have the same size. The topic of workload object attributes is discussed later in this document.

[image: image5.jpg]
The user may desire to have a non uniform distribution of file accesses. This can be accomplished with the percentage geometric workload attribute. The user may specify the percentage of the file accesses that will follow a geometric distribution.
Using this mechanism, the file names selected will follow a geometric distribution. This means that some files will be selected more often than others. See graphs below:

File name access selection is done using a geometric distribution model:

Probability distribution function:
[image: image6.jpg]
Section 5 Auto-scaling

Netmist scales the file sizes automatically so that the aggregate data set of a client is larger than the client's amount of memory and can also scales the file sizes automatically so that the aggregate data sets of all of the clients is larger than the server's amount of memory. This ensures that the clients and the server are going to be using the actual physical I/O devices as their caches will be exceeded. There are command line options to control the scaling behavior.
Section 6 Synchronization mechanisms

Netmist is a distributed benchmark. It uses a socket based communication mechanism to coordinate the activities of all of the clients. Each client maintains an inbound and outbound socket to the controlling process within Netmist. This controlling process uses these communication channels to control the execution of the clients. For example, the clients initialize their data sets and then wait for the controlling process to tell them to begin testing. The controlling process guarantees that all of the clients are finished with their initialization before telling them to begin testing. The communication model is very similar to one used inside of Iozone for its distributed throughput measurements. The executable "netmist" can behave in two distinct different modes. The default is for Netmist to act as the controlling process for coordinating and conducting the benchmark. Once the controlling process is started it will start copies of netmist running on the workstations. These copies will behave as clients. It is the same executable for both modes and is designed to have these two internal behaviors.

Section 7 Controlled shutdown and cleanup

Normally the benchmark runs to completion and each client removes their data sets. In the event that something goes wrong, the user may enter control-C. This will tell the controlling process that it needs to communicate with all of the clients and tell them to shutdown and cleanup. In the event that the communication fails (network outage) then the user can run the same test again but, this time add the -k flag. This will find all of the clients and get them to cleanup and shutdown the benchmark. (if the network is back up) In the event that a client gets an error it will automatically inform the controlling process. The controlling process will then inform the user as to the nature of the error and then conduct a graceful shutdown of the benchmark.

Section 8 How to build
 If you type "make" it will list the known targets :-)

The current makefile supports AIX, BSD, HP-UX, Linux, Solaris, MacOS, VMware and Windows. So if you wish to build netmist on another platform then you will need to edit the makefile and add the target for your architecture. The current targets build and run fine on these platforms. :-) There are two executables and one shell script that are in the kit.

 The kit includes:

netmist.c
 netmist.h

Netmist_Users_Guide.doc

Netmist_Quick_Start_Guide.doc

Netmist_2011_run_rules.doc

Makefile

mempool.c
future_direction

Example_dist
To build Netmist for Windows x86 or x64, please install and use Visual Studio C++ 2010 Express, and select the Netmist.sln solution file. Then click on build.
 netmist is the executable benchmark. The Netmist_Users_Guide is the full set of documentation that is currently available. The Netmist_2011_run_rules.doc is the run rules that must be followed for a run that is going to be submitted for review and possible publication. There is also a quick start guide, if one is in a hurry.
Section 9 How to setup environment for testing

Each client must have all of its remote file systems mounted before the test begins. Each client must be able to execute a remote command "ssh" without any password prompting. In the case of Microsoft Windows clients, the WMIC must be configured so that again no password challenges are needed to start commands on the remote clients. Each client must be able to execute the "scp" command and copy results back to the workstation that is running the benchmark's controlling process. In the case of Microsoft Windows clients, the WMIC must be configures to that a remote file copy can be completed without any password challenges.
The controlling process will be on the workstation where you started the benchmark.

Netmist must have a client configuration file that describes the clients. This is activated with the –g filename option.
The token based configuration file takes the following inputs. The tokens are:

· Clientname=

· Username=

· Workdir=

· Execpath=

· Workload=
Other optional tokens and values that are not in the space delimited format

· Oprate= < Used to set the Op_rate for this process/thread >
· Password= <Used (on Windows clients only) for authentication>
· Instances = < Used to specify how many copies of this line to use >
Example: -g token_file
Clientname=Box1 Username=me Workdir=/test Execpath=/test /netmist Workload=METADATA Oprate=10
The Workload must be one of the valid workloads below:

Freeware version:

METADATA

BACKUP

HOMEDIR

Commercial version:

VDA1*

VDA2*

HOMEFOLDERS

DB_TABLE
DB_LOG

VDI

SWBUILD

USERDEF

*Note that VDA1 and VDA2 are subcomponents of the composite VDA workload, see appendix for details on how to use VDA1 and VDA2 to run VDA. DB_TABLE and DB_LOG are subcomponents of the composite DATABASE workload.
Each of these workloads has its own attributes. This includes unique attributes for op mix, transfer size mix and percent flushed.

You may specify the same client more than once, or you may specify a different client. For each line in this file a netmist process will be started.

Be very sure that you have any needed locking daemons running. HINT: lockd, statd. If you forget to have these running then the benchmark will hang waiting on its first locking operation to complete.

Section 10 How to run the benchmark
 netmist:

 Command line options:

 [-t #]

Seconds to run

 [-w #]

Seconds to warm-up

 [-r #]

Record size in Kbytes (deprecated)

 [-b #[mMgGtT]] .

Client memory size in [mMgGtT]iBytes

 [-B #[mMgGtT]]

Minimum adjustable aggregate data set size in [mMgGtT]iBytes
 [-G] …….…....

Enable heartbeat notification
 [-O #]

Request op/sec rate
 [-N] …………….
Enable op latency, and banding reports

 [-q heartbeat_log] ..
Log all heartbeats to this file.

 [-Q #]

Number of files per directory. Default = 100

 [-T #]

Number of directories per proc. Default = 10
 [-g token_file]

Path to the file that contains the token based configuration information.
 [-i]

Information without run

 [-d #]

Number of processes/client

 [-k]

Kill the testing on all clients

 [-v]

Version information

 [-D]

Install benchmark on clients.

 [-H]

Hostname of PIT service

 [-S]

Service name of PIT service.

 [-E]

Export the current distribution info to stdout

 [-I name]...............

Filename of file with distribution info

 [-F]

Disable all fsync() calls.
 [-U client_log_dir_path]
Path to directory where clients put their logs.

 [-l logname] ……

Send copy of output to a logfile.

 [-K] …………..

Disable unlink of files created by this run.

 [-u] …………...

Use rsh & rcp instead of ssh & scp.
 [-y 6] ………....

Use IPv6 for client communication.

 [-Y] …………..
Dump file access information into the client log.

 [-X] …………..

Sharing mode. All processes share files in the first client’s name space.
 [-h]

Help menu

The -t # option permits one to specify the minimum time each client will perform testing (in seconds). The actual runtime may be greater than this amount of time if the benchmark determines that it needs to run longer so that the caches can be defeated. The runtime automatically scales to match the environment.

The -w # option permits one to specify how long each client will perform a warmup phase before testing. (in seconds) The default is 300 seconds if the -w option is not specified.

The -r # option permits one to specify the transfer size that will be used for reading, writing, and appending to files. It is in Kbytes. (This has been deprecated, because a transfer size

 distribution table is now being used. So you can skip this one.)

The -b #[mMgGtT] option permits one to specify the amount of memory that is in each client. It is in [mMgGtT]ibabytes. The clients must all have the same amount of memory for a valid run. If you are using Linux clients, you may be able to set the memory size at boot time with the mem=nn[kmKM]
boot option. (If there is a Windows way to set the RAM size, it would be nice to mention it here… but I’m **not** a Windows person :-)
The -B #[mMgGtT] option permits one to specify the adjustable aggregate data set size. The auto-scaling mechanism will automatically scale the minimum aggregate data set size so as to compensate for the client caches. This option permits one to increase the total active aggregate data set size. This option is in [mMgGtT]ibabytes.
The –G option enables heartbeat notifications. This is useful for knowing if the test is running
or the entire system is hung.
The -O # sets the request ops/sec rate for this test. If the request rate is higher than the system supports, then the actual rate will be limited by the system. The benchmark will attempt to issue requests at the specified rate, but may only drive up the latency if the system is not capable of satisfying the requests at this rate.
The –N option enables the op latency and latency banding tracking and reporting. This can be used
on physical clients but may have side effects if the client is running inside of a virtual machine. This
is due to the additional calls to get a high resolution timer, that may not have sufficient resolution
inside of a virtual machine.

The –q heartbeat_log permits the user the ability to log all of the heartbeat messages from all of the client processes. This can be used to demonstrate the stability of the op rate during the tests.

The –Q # sets the number of files in the leaf node directories. The default is 100.

The –T # sets the number of directories per processes The default is 10.
The -g client_filename option permits the user to specify the token based client configuration file

The -i option permits the user to run the benchmark to obtain information about what would be tested if the benchmark were to actually run. (Think of make -n) This is handy for providing information about

data set sizes and such before one starts the actual run of the benchmark on a system that does not have the needed resources.

The -d option permits one to specify the number of processes that are in the client configuration file that are actually on the same physical client. netmist will use this information to perform the auto-scaling so that the client's memory is exceeded by the aggregate of processes on the client and not by every

 process on the client.

Unix Example. A client_filename with the following entries
Clientname=Client_1 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Clientname=Client_1 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Clientname=Client_1 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Requires -d # of 3, since Client_1 is entered 3 times and we wish to have one process per entry.

Unix Example. A client_filename with the following entries
Clientname=Client_1 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Clientname=Client_2 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Clientname=Client_3 Username=root Workdir=/mnt Execpath=/path_to_netmist Workload=METADATA
Require a -d # of 1, since we wish to have one process per entry.
The -k option is the "Help me shut this monster down NOW option. It is handy if something went very wrong during a run. For example, a network cable fell out. The normal controlled shutdown process, Control-C, has failed and now you really need to get all of those clients back to a sane state.

The -v option permits one to see the version of netmist being used.

The -D option installs the benchmark on the clients listed in the client_filename file. You must have compiled before you use this.

The -H hostname option permits the use of an external timer. This interfaces with the PIT time server from Iozone. The use of an external timer can be very handy, if the timer resolution is unstable, such as inside of a virtual machine.

The -S Servicename option permits the use of an external timer. This interfaces with the PIT time server from Iozone. The Servicename should be listed in /etc/services.

 Example PIT tcp port 2010.

 PIT
 2010/tcp
Programmable Inter-dimensional Timer

The -E option exports the current op distribution to standard out. One can redirect this to a file, and later use this file as a template for custom distribution runs.

The -I filename option imports the op distribution from the filename specified. This file has the distribution specified in the identical format as that of the -E export option. (Not available in the freeware version)
The -F option disables calls to fsync(), which normally happen after every three writes.
The –U option lets the user pick the directory where the clients put their logs that contain their standard out and standard error outputs.
The –l log_file is for logging of the output to a log file.

The –K option disables the unlinking of files from this run. This is used so that the
next load point can reuse the existing files from the previous load point, if possible. This can save quite a bit of wall clock time.
The –Y option enables the logging of the file accesses to the client log. The log contains the file names that were accessed and the number of times each file was accessed.

The –X option enables sharing mode. In this mode all processes/threads share the directory structure and files that are created by the first client process. This is used when emulating a heavily shared environment such as a Database workload.
The -h option permits one to see the help menu.
The –y 6 tells configures the benchmark to use IPv6 for communication between clients.
Examples:

 --

 No rate limit... find the maximum this box can handle ?

 --

 netmist -d 1 -b 1g -B 1g -g client_list

 One process per client.

 Client has 1 GiBytes of memory

 Adjusted aggregate data set size 1 GiBytes
 Run the test for 300 seconds.

 Warmup phase for 300 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username= root Workdir= /tmp Execpath=/tmp/netmist Workload=METADATA
 The client is named "client1"
 The user account is “root”

 The directory for the data files is /tmp on client1

 The executable for the benchmark is at /tmp/netmist on client1

 The workload is METADATA
 --

 --

 Op rate limited... looking for latency at different loads.

 --

 netmist -d 1 -b 1g -B 1g -O 1000 -g client_list

 One process per client.

 Client has 1 GiBytes of memory

 Adjusted aggregate data set size 1 GiBytes
 The requested ops/sec rate is 1000

 Run the test for 300 seconds.

 Warmup phase for 300 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp Execpath=/tmp/netmist Workload=METADATA
 The client is named "client1"
 The user name is “root”
 The directory for the data files is /tmp on client1

 The executable for the benchmark is at /tmp/netmist on client1

 The workload is METADATA

 Op rate limited... looking for latency at different loads. (2 procs)

 netmist -d 2 -b 1g -B 1g -O 1000 -t 600 -g client_list

 Two processes per client.

 Client has 1 GiBytes of memory

 Adjusted aggregate data set size 1 GiBytes
 The requested ops/sec rate is 1000

 Run the test for 600 seconds.

 Warmup phase for 300 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp Execpath=/tmp/netmist Workload=METADATA
 Clientname=client1 Username=root Workdir=/tmp Execpath=/tmp/netmist Workload=METADATA
 The client is named "client1"
 The user name is “root”

 The directory for the data files is /tmp on client1

 The executable for the benchmark is at /tmp/netmist on client1

 The workload is METADATA, for all processes

 --

 --

 Op rate limited... looking for latency at different loads. (2 Clients)

 --

 netmist -d 1 -b 1g -B 1g -O 1000 -t 600 -w 600 -g client_list

 One processes per client.

 Clients have 1 GiBytes of memory

 Adjusted aggregate data set size 1 GiBytes
 The requested ops/sec rate is 1000

 Run the test for 600 seconds.

 Warmup phase for 600 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 Clientname=client2 Username=root Workdir=/tmp2 Execpath=/tmp/netmist Workload=METADATA
 The clients are named "client1" and "client2"
 The user name is “root”
 The directory for the data files is /tmp1 on client1

 The directory for the data files is /tmp2 on client2

 The executable for the benchmark is at /home/user/netmist on client1

 The executable for the benchmark is at /home/user/netmist on client2

 The workload is METADATA, for all processes

 --

 Op rate limited... looking for latency at different loads. (2 Clients)

 with 2 procs on each client.

 --

 netmist -d 2 -b 1g -B 1g -O 1000 -t 600 -w 600 -g client_list

 Two processes per client.

 Clients have 1 GiBytes of memory

 Adjusted aggregate data set size 1 GiBytes
 The requested ops/sec rate is 1000

 Run the test for 600 seconds.

 Warmup phase for 600 seconds.

 The client configuration file is named client_list

 [the file client_list contains]

 Clientname=client1 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 Clientname=client2 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 Clientname=client1 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 Clientname=client2 Username=root Workdir=/tmp1 Execpath=/tmp/netmist Workload=METADATA
 The clients are named "client1" and "client2"
 The user name is “root”
 The directory for the data files is /tmp1 on client1

 The executable for the benchmark is at /home/user/netmist on client1

 The executable for the benchmark is at /home/user/netmist on client2

 The workload is METADATA, for all processes

Note: You need to remove the client_#_results files if you change the configuration file and run the benchmark again.

Note: The benchmark enforces a minimum runtime so that the data set is used. If insufficient data has been touched then the benchmark will terminate with an error and tell the user to increase the run time.

Section 11 Custom workloads
 This section describes how to create a custom workload. This includes customized op type distributions as well as custom transfer size distributions. This feature is not available in the freeware version. It is included in the commercial version of Netmist from SPEC.
To use the custom distribution capability, first run

netmist -E > workloads

 The file "workloads" will now contain something like: (example below shortened to only one type of workload. There are more in the actual –E output. (The full output contains workloads for METADATA, VDA1, VDA2, BACKUP, HOMEFOLDERS, DB_TABLE, DB_LOG, VDI, SWBUILD, and USERDEF workloads) Some workloads are available in the commercial version, while others are available in the freeware version. Only the commercial workloads can be used for publication.
For any given workload one can specify the percentage of each op type. Also there are 15 I/O slots. Each slot contains a range for transfer size, and a percentage of the I/O transfers that will use each I/O slot. There are 15 I/O slots for read operations, and another 15 I/O slots for write operations.

As I/O operations are generated, the transfer sizes used will be in accordance with the percentages and the ranges specified.

Workload name METADATA

Percent read 10

Percent read file 0

Percent mmap read 0

Percent rand read 8

Percent write 7

Percent write file 0

Percent mmap write 0

Percent rand write 2

Percent rmw 1

Percent mkdir 2

Percent create 2

Percent unlink 2

Percent append 3

Percent locking 6

Percent access 24

Percent stat 26

Percent chmod 2

Percent readdir 4
 Percent copyfile 0

Percent rename 0

Percent statfs 1

Percent pathconf 0

Read elem 0 xfer min size 1

Read elem 0 xfer max size 511

Read elem 0 xfer percent 3

Read elem 1 xfer min size 512

Read elem 1 xfer max size 1023

Read elem 1 xfer percent 1

Read elem 2 xfer min size 1024

Read elem 2 xfer max size 2047

Read elem 2 xfer percent 2

Read elem 3 xfer min size 2048

Read elem 3 xfer max size 4095

Read elem 3 xfer percent 1

Read elem 4 xfer min size 4096

Read elem 4 xfer max size 4096

Read elem 4 xfer percent 16

Read elem 5 xfer min size 4097

Read elem 5 xfer max size 8191

Read elem 5 xfer percent 6

Read elem 6 xfer min size 8192

Read elem 6 xfer max size 8192

Read elem 6 xfer percent 36

Read elem 7 xfer min size 8193

Read elem 7 xfer max size 16383

Read elem 7 xfer percent 7

Read elem 8 xfer min size 16384

Read elem 8 xfer max size 16384

Read elem 8 xfer percent 7

Read elem 9 xfer min size 16385

Read elem 9 xfer max size 32767

Read elem 9 xfer percent 2

Read elem 10 xfer min size 32768

Read elem 10 xfer max size 32768

Read elem 10 xfer percent 9

Read elem 11 xfer min size 65536

Read elem 11 xfer max size 65536

Read elem 11 xfer percent 4

Read elem 12 xfer min size 98304

Read elem 12 xfer max size 98304

Read elem 12 xfer percent 3

Read elem 13 xfer min size 131072

Read elem 13 xfer max size 131072

Read elem 13 xfer percent 2

Read elem 14 xfer min size 262144

Read elem 14 xfer max size 262144

Read elem 14 xfer percent 1

Write elem 0 xfer min size 1

Write elem 0 xfer max size 511

Write elem 0 xfer percent 13

Write elem 1 xfer min size 512

Write elem 1 xfer max size 1023

Write elem 1 xfer percent 3

Write elem 2 xfer min size 1024

Write elem 2 xfer max size 2047

Write elem 2 xfer percent 7

Write elem 3 xfer min size 2048

Write elem 3 xfer max size 4095

Write elem 3 xfer percent 5

Write elem 4 xfer min size 4096

Write elem 4 xfer max size 4096

Write elem 4 xfer percent 11

Write elem 5 xfer min size 4097

Write elem 5 xfer max size 8191

Write elem 5 xfer percent 3

Write elem 6 xfer min size 8192

Write elem 6 xfer max size 8192

Write elem 6 xfer percent 30

Write elem 7 xfer min size 8193

Write elem 7 xfer max size 16383

Write elem 7 xfer percent 7

Write elem 8 xfer min size 16384

Write elem 8 xfer max size 16384

Write elem 8 xfer percent 5

Write elem 9 xfer min size 16385

Write elem 9 xfer max size 32767

Write elem 9 xfer percent 1

Write elem 10 xfer min size 32768

Write elem 10 xfer max size 32768

Write elem 10 xfer percent 6

Write elem 11 xfer min size 65536

Write elem 11 xfer max size 65536

Write elem 11 xfer percent 4

Write elem 12 xfer min size 98304

Write elem 12 xfer max size 98304

Write elem 12 xfer percent 2

Write elem 13 xfer min size 131072

Write elem 13 xfer max size 131072

Write elem 13 xfer percent 2

Write elem 14 xfer min size 262144

Write elem 14 xfer max size 262144

Write elem 14 xfer percent 1

Percent write commit 33
 Percent direct 0

Percent osync 0

Percent geometric 10

Percent compress 0

Background 0

Sharemode 0

Uniform size dist 0

Rand dist behavior 0

FS Type POSIX
Remember..
· Total percent for the op_mix for each workload type must be 100.

· Total percent for the read-transfer size distribution for each workload type must be 100.
· Total percent for the write-transfer size distribution for each workload type must be 100.
· Percent for the write commit can be 0 to 100 percent, for each of the workload types..
· Percent for direct can be from 0 to 100 percent, for each of the workload types.

· Percent for osync can be from 0 to 100 percent, for each of the workload types.

· Percent for compress can be from 0 to 100 percent, for each of the workload types.

· When one specifies “Backgound 1” then workload will not be included in the overall results.
The individual workload logs will contain the results for the workload, but the overall summary
will not include Background workloads.
· Sharemode will enable sharing for all processes that are using this workload object.
 Now simply edit the "workloads" file to the desired distribution of workload types, ops and transfer sizes. Then later, simply use the -I option and specify the filename. e.g. -I workload

Section 12 Example of the "info" output
 Another option that one may find useful is the -i option. With this option the benchmark is
 not executed, but rather just lets the user know what it would be doing, if it were to be started.

 **

 | Netmist: (Networked Maximum I/O Sustained Throughput) |

 **

 Test run time = 300 seconds

 Warmup time = 300 seconds

 Request rate 3000 ops/sec

 Running test on 8 clients.

 Results directory: /home/capps/netmist

 Clients have 1024 MiBytes of memory

 Clients have 125 MiBytes of memory per process

 Clients each have 8 processes

 Adjusted aggregate data set size is 1 GiBytes
 Client file size
= 24 kbytes

 Client data set size
= 125 MiBytes per process

 Total data set size
= 1024 MiBytes

 This is the result of netmist with the "-i" option. It is handy as it provides the data set size information that will let you know if you have allocated sufficient space for the benchmark to run. It is also handy to know what is going to run before losing time running a command that you did really want to run.

Section 13 Example from a non-rate-limited run the benchmark

 | Networked Maximum I/O Sustained Throughput: Netmist_2011 |

 Netmist $Revision: 1.243 $
 Test run time = 300 seconds, Warmup = 300 seconds.

 Running 10 copies of the test on 5 clients

 Results directory: /mnt/fas2020/netmist_dir

 Clients have a total of 5 GiBytes of memory

 Clients have 512 MiBytes of memory size per process

 Clients each have 2 processes

 Adjusted aggregate data set is 1 GiBytes
 Each process file size
 = 528 kbytes

 Client data set size
 = 5156 MiBytes

 Total active data set size
= 25781 MiBytes

 Total initial file space
= 25781 MiBytes

 Total max file space
= 30937 MiBytes

 Starting tests: Sat Jan 8 11:30:07 2011

 Launching 10 clients.

 Starting test on nv3 Workload METADATA

 Starting test on nv5 Workload METADATA

 Starting test on nv7 Workload METADATA

 Starting test on lab Workload METADATA

 Starting test on nv1 Workload METADATA

 Starting test on nv3 Workload METADATA

 Starting test on nv5 Workload METADATA

 Starting test on nv7 Workload METADATA

 Starting test on lab Workload METADATA

 Starting test on nv1 Workload METADATA

 Waiting to finish initialization.
Sat Jan 8 11:30:26 2011

 Initialization finished:

Sat Jan 8 11:40:23 2011

 Testing begins:

Sat Jan 8 11:40:23 2011

 Waiting for tests to finish. Sat Jan 8 11:40:33 2011

 Sat Jan 8 11:50:36 2011
10 percent complete

 Sat Jan 8 11:55:26 2011
20 percent complete

 Sat Jan 8 12:00:37 2011
30 percent complete

 Sat Jan 8 12:05:37 2011
40 percent complete

 Sat Jan 8 12:10:48 2011
50 percent complete

 Sat Jan 8 12:15:38 2011
60 percent complete

 Sat Jan 8 12:20:49 2011
70 percent complete

 Sat Jan 8 12:25:49 2011
80 percent complete

 Sat Jan 8 12:30:50 2011
90 percent complete

 Tests finished:

Sat Jan 8 12:38:48 2011

 Overall average latency 3.48 Milli-seconds
 Overall Ops/sec 2873.00 Ops/sec
 Overall Read_throughput 46434.34 Kbytes/sec

 Overall Write_throughput 45954.82 Kbytes/sec

 Overall throughput 92389.16 Kbytes/sec
Section 14 Example from a rate-limited (-O 2500 ops/sec) run the benchmark

 | Networked Maximum I/O Sustained Throughput: Netmist_2011 |

 Netmist $Revision: 1.243

 Test run time = 300 seconds, Warmup = 300 seconds.

 Request Op_rate = 2500 ops/second

 Running 10 copies of the test on 5 clients

 Results directory: /mnt/fas2020/netmist_dir

 Clients have a total of 5 GiBytes of memory

 Clients have 512 MiBytes of memory size per process

 Clients each have 2 processes

 Adjusted aggregate data set size 1 GiBytes
 Each process file size = 528 kbytes

 Client data set size = 5156 MiBytes

 Total active data set size = 25781 MiBytes

 Total initial file space = 25781 MiBytes

 Total max file space = 30937 MiBytes

 Starting tests: Sun Jan 9 10:18:57 2011

 Launching 10 clients.
 Starting test on nv3 Workload METADATA

 Starting test on nv5 Workload METADATA

 Starting test on nv7 Workload METADATA

 Starting test on lab Workload METADATA

 Starting test on nv1 Workload METADATA

 Starting test on nv3 Workload METADATA

 Starting test on nv5 Workload METADATA

 Starting test on nv7 Workload METADATA

 Starting test on lab Workload METADATA

 Starting test on nv1 Workload METADATA

 Waiting to finish initialization. Sun Jan 9 10:19:17 2011

 Initialization finished: Sun Jan 9 10:29:22 2011

 Testing begins: Sun Jan 9 10:29:22 2011

 Sun Jan 9 10:40:26 2011 10 percent complete

 Sun Jan 9 10:46:06 2011 20 percent complete

 Sun Jan 9 10:51:56 2011 30 percent complete

 Sun Jan 9 10:57:57 2011 40 percent complete

 Sun Jan 9 11:03:58 2011 50 percent complete

 Sun Jan 9 11:09:48 2011 60 percent complete

 Sun Jan 9 11:15:39 2011 70 percent complete

 Sun Jan 9 11:21:29 2011 80 percent complete

 Sun Jan 9 11:27:20 2011 90 percent complete

 Tests finished: Sun Jan 9 11:34:58 2011

 --

 Overall average latency 3.05 Milli-seconds
 Overall Ops/sec 2493.00 Ops/sec
 Overall Read_throughput 53074.83 Kbytes/sec

 Overall Write_throughput 52527.20 Kbytes/sec

 Overall throughput 105602.04 Kbytes/sec

 --
Section 15 Screenshots

Example: RHEL5 Running Netmist in the INIT phase: (5 clients, 3 procs on each)

[image: image7.png]
Example: RHEL5 running Netmist in the Warm-up phase. (5 clients, 3 procs each)

[image: image8.png]
Example: RHEL5 running Netmist in the RUN phase. (5 clients, 3 procs each)

[image: image9.png]
Wireshark of NFSv3 RHEL5 running Netmist in the RUN phase:

[image: image10.png]
Wireshark of NFSv4 Fedora Core 14 running Netmist in the INIT phase:

[image: image11.png]
Example: Win7 running Netmist in the RUN phase. (3 clients, 2 procs each)

[image: image12.jpg]
Example: Windows 2008 running Netmist in RUN phase. (3 clients, 2 procs each)
[image: image13.jpg]
Wireshark of Windows 2008 SMB2 Server traffic during Netmist RUN phase:
[image: image14.jpg]
Example: MAC OS-X (SnowL) running Netmist, INIT phase. (1 clients, 4 procs)

[image: image15.png]
Example: MAC OS-X (SnowL) running Netmist, RUN phase. (1 clients, 4 procs)

[image: image16.png]
Example: MAC OS-X (SnowL) running Netmist. Network graph. (1 clients, 4 procs)

[image: image17.png]
Example: MAC OS-X (SnowL) running Netmist, results phase. (1 clients, 4 procs)

[image: image18.png]
Example of Virtualized environments:

Screenshot of VmWare client, running 5 virtual machines, that are each running Windows XP-Pro, that are each running 2 copies of Netmist, that is testing the local filesystem, that is provided to the virtual machine by the Hypervisor, and is backed by a filer that is running NFSv3.

[image: image19.jpg]
In this screenshot you can see the network activity of the Hypervisor talking to the NFSv3 server that is providing all of the physical storage.

Example of Netmist running on virtualized Windows 8, in an active directory domain, on HyperV, testing a mapped remote CIFS file server.

[image: image20.png]

Example of a multiple load point run:

[image: image21.jpg]
Note: The system above was not configured with sufficient disks to achieve its maximum throughput. It is only an example of a 10 point run, and not representative of the peak performance of any platform.

In the above graph, there are 10 requested load point, the throughput and latency are then graphed so that one can see the behavior as a function of rising request rates. It is envisioned that this type of graph will be used for comparative analysis of platforms.

As one can see from all of the above examples, Netmist is portable across operating systems, file system types, and protocols. With this method, one can also test systems that are connected over IPv4, IPv6, and even measure systems with IPSEC in the data path.

Section 16 Corporate firewalls and NATs
 It is unlikely that one will be able to run netmist in such a way as to control multiple workstations that are outside of a corporate firewall and have the controlling process be running inside the corporate firewall.

This is because netmist uses dynamically allocated TCP ports in the range of 20,000 to 30,000. These ports may be blocked by a corporate firewall. Also running netmist behind a NAT'ed connection is unlikely to work due to the dynamic allocation of ports. It was not the author's lack of foresight that causes these constraints but rather the lack of knowledge, time, and motivation to make it work under these situations.

Section 17 Power monitoring and external monitors

 Netmist has facilities to run external scripts. There are two basic forms that are implemented. The first is the extern power monitor script. This script is named “netmist_power.sh”. If this script exists and is executable then it will be called twice. The first time the power script is called it is before any testing has started. The script is handed an option “Baseline”. This is so the external power script will take a measurement before any load is present. The second time the power script is called is when the load is actively running. This is to facilitate the measurement of power under the requested load.
 The second form of script is an external monitor script. This script is named “netmist_mon.sh”. If this script exists and is executable then it will be called three times. The first is just before the initialization phase. The second is just before the warmup and run phases, and the third is when the test is complete.

 Both of these external monitors are only executed by the controlling instance of Netmist.

Section 18 Common failures

1. If you do not have the lock manager running the test will hang. (lockd & statd)
2. Make sure there are NO firewalls running. Iptables, ip6tables, Selinux MUST be disabled.
3. The software validates that all clients are running the same version of the software. If they are not then the test will terminate with a message that informs the user of the situation.

4. If you have insufficient disk space then the benchmark will terminate and inform the user of the error.

5. If the client thinks his name is something different than what was provided in the client_file then the controlling process will not be able to communicate with the client. Make sure that DNS is properly configured.
Section 19 Logs gone wild....

There are several interesting log files that one might wish to examine. There are log files for each child process that store statistics and are later used to produce the overall result. These files are created in the top level of the test directory, and are later copied to the working directory.

These logs begin with "client_". These logs look like this:

Client 8 results:

Client process has 110 initialized directories with a total of 11000 initialized files.

Client process total active data space = 1718 MiBytes

Client memory size = 5 GiBytes

Adjusted aggregate data set size = 1 GiBytes

Warmup time 300 seconds.

1461323 total logical ops. File size 352 kbytes, Record size 13 kbytes. Runtime 6112 seconds

Read throughput = 43626 kbytes/sec. Read 1894919 kbytes total.

Read rand throughput = 42718 kbytes/sec. Read 2722984 kbytes total.

Write throughput = 45039 kbytes/sec. Write 352146 kbytes total.

Write rand throughput = 45033 kbytes/sec. Write 355311 kbytes total.

Append throughput = 45034 kbytes/sec. Write 354535 kbytes total.

Mon Jan 3 14:21:04 2011

Ops distribution:

 Read ops
 = 145961
 Read file ops
 = 0

 Mmap read file ops = 0
 Read rand file ops = 204469
 Write ops

 = 44000
 Write file ops
 = 0
 Mmap write file ops = 0
 Write rand file ops = 43448
 Rmw ops = 8342
 Mkdir ops
= 29129

 Create ops
= 29414

 Unlink ops
= 29415
 Append file ops
= 44236

 Lock ops
= 87299

 Access ops
= 350979

 Stat ops
= 365789

 Chmod ops
= 29649

 Readdir ops
= 59660
 Copyfile ops = 0

 Rename ops
= 0

 Statfs ops = 365
 Pathconf ops = 0
 Total file ops
= 2791173

 Average latency
= 2.188 milli seconds

Another set of logs are also stored in the test directory. These logs begin with "Workload" and contain statistics that are associated with each of workload objects that were used in the test. There is one Workload* log for each child process. Here is an example of a couple of Workload logs.
Workload name
: STREAM
Total Ops
: 3100142

Average latency
: 1.971 milli seconds

Ops/sec
: 507
Write ops
: 134820
Write file ops
: 0

Mmap write ops : 0
Read ops
: 149500
Read file ops

: 0

Mmap read ops : 0
Mkdir ops
: 29802

create ops
: 30108
unlink ops
: 30108
stat ops
: 374521

append ops
: 45264

lock ops
: 89506

access ops
: 359349

chmod ops
: 29649

readdir ops
: 59660

write_rand ops
: 44487

read_rand ops
: 209323
rmw ops : 138495

copyfile ops : 0
rename ops : 0

statfs ops
: 374

pathconf ops : 0
Workload name
: METADATA
Total Ops
: 896845

Average latency
: 2.982 milli seconds

Ops/sec

: 335
write ops
: 45470
write file ops

: 0

mmap write ops : 0
read ops
: 35279
read file ops

: 0

mmap read ops : 0
mkdir ops
: 7054

create ops
: 6783
unlink ops
: 6874

stat ops
: 91535

append ops
: 10507

lock ops
: 20980

access ops
: 87861

chmod ops
: 6951

readdir ops
: 13944

write_rand ops
: 10516

read_rand ops
: 27837
rmw ops : 13849

copyfile ops : 0
rename ops : 0

statfs ops
: 915

pathconf ops : 0
There is another set of logs that contains progress information for each of the child processes on each node. These logs begin with "netmist_C" and are stored in the local filesystem /tmp on each respective node that is participating in the benchmark. These progress logs are very handy for monitoring the progress of the benchmark. The /tmp/netmist_C*.logs looks like this:

Client 8: My_workload id 4 Name: VDA1

Average read size = 13 Kbytes

Average write size = 8 Kbytes

Mon Jan 3 12:23:36 2011

Finished client init files

Min Read ops = 27000

Min Write ops = 44000

Mon Jan 3 12:33:50 2011 Starting warm-up phase.

Mon Jan 3 12:38:51 2011 Starting run phase

Mon Jan 3 12:43:31 2011 -> 10 percent complete

Mon Jan 3 12:48:02 2011 -> 20 percent complete

Mon Jan 3 12:52:32 2011 -> 30 percent complete

Mon Jan 3 12:57:03 2011 -> 40 percent complete

Mon Jan 3 13:01:44 2011 -> 50 percent complete

Mon Jan 3 13:06:04 2011 -> 60 percent complete

Mon Jan 3 13:10:35 2011 -> 70 percent complete

Mon Jan 3 13:15:05 2011 -> 80 percent complete

Mon Jan 3 13:19:46 2011 -> 90 percent complete

Mon Jan 3 13:24:54 2011 Client reporting results.

Client 3: My_workload id 0 Name: VDS
Average read size = 19 Kbytes

Average write size = 16 Kbytes

Mon Jan 3 12:23:29 2011

Finished client init files

Min Read ops = 18000

Min Write ops = 22000

Mon Jan 3 12:33:43 2011 Starting warm-up phase.

Mon Jan 3 12:38:43 2011 Starting run phase

Mon Jan 3 12:43:24 2011 -> 10 percent complete

Mon Jan 3 12:48:05 2011 -> 20 percent complete

Mon Jan 3 12:52:45 2011 -> 30 percent complete

Mon Jan 3 12:57:26 2011 -> 40 percent complete

Mon Jan 3 13:02:07 2011 -> 50 percent complete

Mon Jan 3 13:06:37 2011 -> 60 percent complete

Mon Jan 3 13:11:28 2011 -> 70 percent complete

Mon Jan 3 13:15:58 2011 -> 80 percent complete

Mon Jan 3 13:20:39 2011 -> 90 percent complete

Mon Jan 3 13:25:56 2011 Client reporting results.

To enable even more extensive logging, one may optionally edit netmist.c and change cdebug, ldebug, or xdebug. Then re-compile. This will turn on even more logging to files in /tmp that start with "netmist_err" and "netmist_out" These logs contain all of the outputs from stdout and stderr from each of the child processes.

For most folks, you'll want to monitor "/tmp/netmist_C*" on one of the child nodes. This will provide progress information.

Section 20 Latency reporting and histogram bands
If one enables the latency reporting with the –N option then one will receive additional information concerning the latency. The summary level will report a latency histogram, and the child logs will report the average latency for each op type.

Example: (Summary output of the histogram information)

Starting tests: Tue May 10 15:46:19 2011

 Starting test on: localhost Workload: SWBUILD
 Starting test on: localhost Workload: SWBUILD
 Waiting to finish initialization. Tue May 10 15:46:23 2011

 Initialization finished: Tue May 10 15:53:02 2011

 Testing begins: Tue May 10 15:53:02 2011

 Waiting for tests to finish. Tue May 10 15:53:02 2011

 Tests finished: Tue May 10 17:50:45 2011

 --

 Overall average latency 3.83 Milli-seconds

 Overall Netmist_2011 Ops/sec 523.00 Ops/sec

 Overall Read_throughput ~ 2096.23 Kbytes/sec

 Overall Write_throughput ~ 1999.39 Kbytes/sec

 Overall throughput ~ 4095.63 Kbytes/sec

 Band 1: 20us:221314 40us:646717 60us:315051 80us:122690 100us:47533

 Band 2: 200us:148291 400us:39206 600us:3868 800us:1651 1ms:731

 Band 3: 2ms:1085 4ms:2468 6ms:13129 8ms:39081 10ms:47277

 Band 4: 12ms:45169 14ms:38674 16ms:18774 18ms:7515 20ms:6053

 Band 5: 40ms:31365 60ms:26075 80ms:19399 100ms:0

 Band 6: 200ms:22451 400ms:5452 600ms:1871 800ms:729 1s:284

 Band 7: 2s:273 4s:3 6s:0 8s:0 10s:0

 Band 8: 20s:0 40s:0 60s:0 80s:0 120s:0

 Band 9: 120+s:0
 --

If one were to graph the latency histogram data from above one would see something like this:

[image: image22.jpg]
The –N additional latency information in the child and workload logs:

Example:

Workload name
: METADATA
Total Ops
: 1759173

Average latency
: 3.818 milli seconds

Ops/sec
: 262

Write ops
: 132000
Avg Latency: 0.020386
Write file ops : 0 Avg Latency: Not collected
Mmap write ops : 0 Avg Latency: Not collected
Read ops : 92387
Avg Latency: 0.019348
Read file ops : 0 Avg Latency: Not collected
Mmap read ops : 0 Avg Latency: Not collected
Mkdir ops
: 18843
Avg Latency: 0.003119
create ops
: 18618
Avg Latency: 0.002118
unlink ops
: 18619
Avg Latency: 0.002118
stat ops
: 247288
Avg Latency: 0.000032
append ops
: 28003
Avg Latency: 0.032596
lock ops
: 55292
Avg Latency: 0.000061
access ops
: 235763
Avg Latency: 0.000031
chmod ops
: 19321
Avg Latency: 0.001427
readdir ops
: 37234
Avg Latency: 0.001383
write_rand ops
: 29868
Avg Latency: 0.030091
read_rand ops
: 75839
Avg Latency: 0.002443
rmw ops
: 5339
Avg Latency: 0.004743
Copyfile ops : 0 Avg Latency: Not collected.

Rename ops : 0 Avg Latency: Not collected.

Statfs ops
: 17247
Avg Latency: 0.000032
Pathconf ops
: 0
Avg Latency: Not collected
Section 21 External vendor provided scripts, or executables:
netmist_mon.sh or netmist_mon.cmd

If this shell script, or executable, exists in the current working directory where the first instance of Netmist was started then it will be executed at the following points in the run:

· At the beginning of the INIT phase and is passed “INIT” as an argument.

· At the beginning of the RUN phase and is passed “RUNNING” as an argument.

· At the end of the test phase and is passed “STOP” as an argument.

The purpose of this plug-in script is to provide a method of triggering external
monitoring that consumer may wish to automation with Netmist.

netmist_power.sh or netmist_power.cmd
If this shell script, or executable, exists in the current working directory where the first instance of Netmist was started, then it will be executed at the following points in the run:

· Before any testing begins. So that an idle baseline of power consumption can be taken.

· When the test is 70% of the way through the RUN phase. So that the power consumption may be measured under the current load.

netmist_stat.sh or netmist_stat.cmd
This script, or executable, is required for a compliant submission and is supplied by the vendor
This script, or executable, must exist and be located in the current working directory where the first instance of Netmist was started, then it will be executed at the following points in the run:
· At the beginning of the RUN phase and is passed “ZERO” as an argument. This is so that an external set of statistical counters may be reset to zero, if needed.

· At the end of the test, and is passed “STOP”, so an external set of statistical counters may be collected.
Minimum collection of the following statistical values for compliance.
 Logical IP layer:

· Total IP packets sent and received
· Total IP Bytes sent and received
 Physical network layer:
· Total network packets sent and received
· Total network Bytes sent and received
 Filesystem protocol layer:

· All server side statistics and counters for all protocol specific information that is collected when the load is presented at the client.
Information that is to be collected.
 Op_name Number of ops

· Op_name (protocol & vendor dependent) Op_count
· Op_name (protocol & vendor dependent) Op_count

· Op_name (protocol & vendor dependent) Op_count

· ……

The purpose of collecting these counters is so that the user can understand how much of the work was handled by the client, and how much of the work was handled by the system under test.

Below is an example of each of each layer, and the counters that are to be collected and submitted with any compliant submission.

Example of the output from a netmist_stat.sh

IP statistics

IP Packets received: 7345670
IP Packets sent: 8582942
IP Bytes send: 13234563
IP Bytes received: 132498984
Physical Network specific statistics

Ethernet:

TX packets: 39266805
RX packets: 70579408
TX bytes: 4253153798
RX bytes: 3969437307
Protocol specific statistics

NFS statistics
Server nfs v3:
 Operation Count
 null

357

 getattr

6882

 setattr

252

 lookup

993

 access

928

 readlink

0

 read

83913

 write

33414

 create

276

 mkdir

5

 symlink

0

 mknod

0

 remove

63

 rmdir

12

 rename

0

 link

0

 readdir

1

 readdirplus
63

 fssstat

11691

 fsinfo

413

 pathconf
22

 commit

5790

Section 22 (contact info) Iozone.org

Iozone.org test facility:

[image: image23.jpg]
Netmist test facility:

[image: image24.jpg]
Don_Capps@netapp.com

capps@iozone.org

[image: image25.jpg]
Appendix:

Workload descriptions

The following section describes the workload definitions for the supported workload types.

· SWBUILD
· DATABASE
· DB_TABLE
· DB_LOG
· VDA
· VDA1
· VDA2
· VDI
· METADATA
· BACKUP

· HOMEFOLDERS ??? (Microsoft needs to fill this out)
SWBUILD Workload attributes
The SWBUILD workload object was tuned from traces collected on system in the chip design arena. Conceptually, these tests are similar to running Unix ‘make’ files against several tens of thousands of files. The file attributes are checked (metadata operations) and if necessary, the file is read, compiled, then written back out to disk.

SWBUILD Workload attributes

	Op type
	Percent of mix

	Seq Read
	0

	Seq read file
	6

	Mmap read
	0

	Rand read
	0

	Seq write
	0

	Seq write file
	7

	Mmap write
	0

	Rand write
	0

	RMW
	0

	Mkdir
	1

	Create
	1

	Unlink
	2

	Append
	0

	Locking
	0

	Access
	6

	Stat
	70

	Chmod
	5

	Readdir
	2

	Copyfile
	0

	Rename
	0

	Statfs
	0

	Pathconf
	0

	Custom1
	0

	Custom2
	0

SWBUILD I/O transfer size distributions

	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	1
	0
	1
	511
	5

	1
	512
	1023
	5
	1
	512
	1023
	3

	2
	1024
	2047
	7
	2
	1024
	2047
	10

	3
	2048
	4095
	7
	3
	2048
	4095
	15

	4
	4096
	4096
	0
	4
	4096
	4096
	0

	5
	4096
	8191
	45
	5
	4096
	8191
	14

	6
	8192
	8192
	0
	6
	8192
	8192
	0

	7
	8192
	16383
	13
	7
	8192
	16383
	7

	8
	16384
	16384
	0
	8
	16384
	16384
	0

	9
	16384
	32767
	3
	9
	16384
	32767
	6

	10
	32768
	65535
	2
	10
	32768
	65535
	4

	11
	65536
	65536
	0
	11
	65536
	131072
	36

	12
	98304
	98304
	0
	12
	98304
	98304
	0

	13
	65536
	131072
	17
	13
	131072
	131073
	0

	14
	262144
	262144
	0
	14
	262144
	262144
	0

	15
	524288
	524288
	0
	15
	524288
	524288
	0

SWBUILD Additional attributes:

	Other Attributes
	Value

	Percent write commit
	33

	Percent O_Direct
	0

	Percent O_SYNC
	0

	Percent geometric
	10

	Percent Compressible
	0

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS Type
	POSIX

Database workload attributes:

Description:

Below is the collection of knowledge from the database gurus. It is a collection of attributes and methods that are commonly seen in database file accesses.

· 90% random reads and all writes
· 10% sequential are just reads
· 80% reads
· 20% writes
· Random IOs are 8K
· Sequential are reads and 1MB in size\
· All IOs are direct
 - what if client doesn't do this (old clients only) - do explicit syncs
· Application gets a thread that does its own reads
· Background process (or small number) flushes pages async (lots of potential parallelism)
· aio interface or could handle with more cleaner threads, but not portable across all operating system types and platforms ?
· Small amount of sequential writes for redo log (should we model this)?
· single threaded write stream with sequential writes of variable length as soon as it can
· 512 bytes to many 10s of Ks
· Logs virtual changes – not whole pages so they are usually much less than write size – maybe 10% of page writes
· If random reads exceed like 20ms, maybe even 10ms – you fail
· Files 10-100s, maybe thousands, not millions
· Metadata?
· No POSIX level locking
· Oracle will lock the entire file for exclusive use at startup (just to prevent multiple copies)
· Occasional attributes accesses – some clients that turn off attribute caching (may be necessary for clustered database)
· Dataset size
· TPC has a rule that size of database is a function of rate
· Idea: Make all files 2GB in size, increase number of files as load increases?
· Still an open issue (2GB max file size is still present in some systems)
· Working set size and access pattern
· Non-uniform access
· 80% of random access should go to 5%
· Hot spots should move over time
· would be better if it wasn't the same files hot
· Perhaps strided patterns (like 8K hot, then 64K not hot, then 8K hot)
· another area for more opinions from others
· Non-dedupable – due to unique identifier
· Compress decently– 2:1 or better, many would argue
· Attribute caching disabled on client. AC-timeout = 0, NOAC = true
Accesses to regions of the DB_TABLE’s file space look like the below:

[image: image26.jpg]
Physical accesses to the files will look like this:

[image: image27.png]

DB_TABLE workload attributes:

	Op type
	Percent of mix

	Seq Read
	1

	Mmap read
	0

	Rand read
	79

	Seq write
	0

	Mmap write
	0

	Rand write
	20

	RMW
	0

	Mkdir
	0

	Create
	0

	Unlink
	0

	Append
	0

	Locking
	0

	Access
	0

	Stat
	0

	Chmod
	0

	Readdir
	0

	Copyfile
	0

	Rename
	0

	Statfs
	0

	Pathconf
	0

	Custom1
	0

	Custom2
	0

DB_TABLE I/O transfer size distributions

	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	0
	0
	512
	511
	0

	1
	512
	1023
	0
	1
	1024
	1024
	0

	2
	1024
	2047
	0
	2
	1536
	1536
	0

	3
	2048
	4095
	0
	3
	2048
	2048
	0

	4
	4096
	4096
	0
	4
	2560
	2560
	0

	5
	4097
	8191
	0
	5
	3072
	3072
	0

	6
	8192
	8192
	99
	6
	3584
	3584
	0

	7
	8193
	16383
	0
	7
	4096
	4096
	0

	8
	16384
	16384
	0
	8
	4608
	4608
	0

	9
	16385
	32767
	0
	9
	5120
	5120
	0

	10
	32768
	32768
	0
	10
	8192
	8192
	100

	11
	65536
	65536
	0
	11
	12288
	12288
	0

	12
	98304
	98304
	0
	12
	16384
	16384
	0

	13
	131072
	131072
	0
	13
	20480
	20480
	0

	14
	262144
	262144
	0
	14
	24576
	24576
	0

	15
	1 MB
	1MB
	1
	15
	32768
	32768
	0

DB_TABLE Additional attributes:

	Other Attributes
	Value

	Percent write commit
	100

	Percent O_Direct
	100

	Percent O_SYNC
	0

	Percent Geometric
	2

	Percent Compressible
	50

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS type
	POSIX

DB_LOG workload attributes:

	Op type
	Percent of mix

	Seq Read
	0

	Mmap read
	0

	Rand read
	0

	Seq write
	80

	Mmap write
	0

	Rand write
	20

	RMW
	0

	Mkdir
	0

	Create
	0

	Unlink
	0

	Append
	0

	Locking
	0

	Access
	0

	Stat
	0

	Chmod
	0

	Readdir
	0

	Copyfile
	0

	Rename
	0

	Statfs
	0

	Pathconf
	0

	Custom1
	0

	Custom2
	0

DB_LOG I/O transfer size distributions

	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	0
	0
	512
	511
	5

	1
	512
	1023
	0
	1
	1024
	1024
	5

	2
	1024
	2047
	0
	2
	1536
	1536
	5

	3
	2048
	4095
	0
	3
	2048
	2048
	5

	4
	4096
	4096
	0
	4
	2560
	2560
	5

	5
	4097
	8191
	0
	5
	3072
	3072
	5

	6
	8192
	8192
	100
	6
	3584
	3584
	5

	7
	8193
	16383
	0
	7
	4096
	4096
	5

	8
	16384
	16384
	0
	8
	4608
	4608
	5

	9
	16385
	32767
	0
	9
	5120
	5120
	5

	10
	32768
	32768
	0
	10
	8192
	8192
	10

	11
	65536
	65536
	0
	11
	12288
	12288
	10

	12
	98304
	98304
	0
	12
	16384
	16384
	10

	13
	131072
	131072
	0
	13
	20480
	20480
	10

	14
	262144
	262144
	0
	14
	24576
	24576
	10

	15
	1 MB
	1MB
	0
	15
	32768
	32768
	0

DB_LOG Additional attributes:

	Other Attributes
	Value

	Percent write commit
	100

	Percent O_Direct
	100

	Percent O_SYNC
	0

	Percent Geometric
	2

	Percent Compressible
	50

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS type
	POSIX

VDA (Video Data Acquisition) workload attributes
VDA is a composite workload that uses both the VDA1 and VDA2 workload objects.

The benchmark generally simulates applications that store data acquired from a temporally volatile source (e.g. surveillance cameras). A stream is referred to an instance of the application storing data from a single source (e.g. one video feed). The storage admin is concerned primarily about maintaining a minimum fixed bit rate per stream and secondarily about maintaining the fidelity of the stream. The goal of the storage admin is to use as many simultaneous streams as possible while meeting the bit rate and fidelity constraints.

The unit business metric for this workload is a “stream”. The goal of the benchmark is to find the maximum number of streams a system can support while maintaining a given minimum data rate per stream.

A stream maps to a single netmist process that executes the workload definition on a dedicated fileset described below. The number of streams is increased until the average data rate of some percentage of the streams cannot be sustained.

The user must provide 1) a number of streams and 2) as list of client/mount points. The number of streams must be at least equal to the number of client/mount points. The N streams are then translated into N netmist procs, which are assigned to the client/mount points in a round-robin fashion.

Optional parameters which are configurable but locked down for submission are 1) Oprate scaling factor 2) Oprate deviation threshold.

The workload object is described below.

VDA Operation Mix

	Operation
	VDA1 (oprate=2)
	VDA2 (oprate=0.22)

	Read
	0
	5

	Read file
	0
	0

	Mmap read
	0
	0

	Rand read
	0
	86

	Write
	100
	0

	Write file
	0
	0

	Mmap write
	0
	0

	Rand write
	0
	0

	Rwm
	0
	2

	Mkdir
	0
	0

	Create
	=
	0

	Unlink
	0
	0

	Append
	0
	0

	Locking
	0
	0

	access
	0
	2

	Stat
	0
	2

	Chmod
	0
	0

	Readdir
	0
	3

	Copyfile
	0
	0

	rename
	0
	0

	Statfs
	0
	0

	Pathconf
	0
	0

VDA transfer size distribution (applies to both VDA1 and VDA2)
	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	0
	0
	1
	511
	0

	1
	512
	1023
	0
	1
	512
	1023
	0

	2
	1024
	2047
	0
	2
	1024
	2047
	0

	3
	2048
	4095
	0
	3
	2048
	4095
	0

	4
	4096
	4096
	0
	4
	4096
	4096
	0

	5
	4096
	8191
	0
	5
	4096
	8191
	0

	6
	8192
	8192
	0
	6
	8192
	8192
	0

	7
	8192
	16383
	0
	7
	8192
	16383
	0

	8
	16384
	16384
	0
	8
	16384
	16384
	0

	9
	16384
	32767
	0
	9
	16384
	32767
	0

	10
	32768
	32768
	0
	10
	32768
	32768
	5

	11
	65536
	65536
	15
	11
	65536
	65536
	10

	12
	131072
	131072
	 10
	12
	131072
	131072
	10

	13
	262144
	262144
	20
	13
	262144
	262144
	25

	14
	524288
	524288
	35
	14
	524288
	524288
	25

	15
	1 MB
	1 MB
	20
	15
	1 MB
	1 MB
	25

VDA other properties

	Other Attributes
	Value

	Percent write commit
	66

	Percent O_Direct
	0

	Percent O_SYNC
	0

	Percent Geometric
	0

	Percent Compressible
	0

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS type
	POSIX

Each process has a fixed op rate, and all processes share the same op rate, and there is a fixed 9:1 op rate ratio between the VDA1 processes and the VDA2 processes. The VDA1 processes have a value of “2” for the op rate, and the VDA2 processes have an op rate of “0.22”. On limited testing this corresponds to an average data rate of ~10 Mbps, which is roughly in the middle of the range of standard video bit rates (10 Kbps – 50 Mbps). Therefore one “stream” is defined as two netmist processes, both having -Q 1, -T 1. The process that simulates the video data (VDA1) has Oprate=2. The process that simulates the other tasks a VDA application might do, which is heavier on reads (VDA2) has Oprate=0.22

The primary metrics per load point for this workload are 1) number of streams sustained, 2) average response time, and 3) total data rate/op rate.

Example:

Let #=number of streams, then run (for 10 equally space number of streams)

netmist -b #g -B #g -g clients.txt -d N -K -N -Q 1 -T 1 -t 300 -w 300

where clients.txt is

Clientname=client1 Username=me Workdir=/mnt Execpath=/usr/local/bin/netmist Workload=VDA1 Oprate=2 Instances= #
Clientname=client1 Username=me Workdir=/mnt Execpath=/usr/local/bin/netmist Workload=VDA2 Oprate=0.22 Instances= #
Clientname=client2 Username=me Workdir=/mnt Execpath=/usr/local/bin/netmist Workload=VDA1 Oprate=2 Instances= #
Clientname=client2 Username=me Workdir=/mnt Execpath=/usr/local/bin/netmist Workload=VDA2 Oprate=0.22 Instances= #
VDS (Video Data Serving) workload attributes

The data comes from several sources:

· Streaming/Digital Media gurus

· IBM Redbook - http://www.redbooks.ibm.com/abstracts/sg246700.html?Open

· Many of the experts contributed to this book. The first chapter has a good rough description of various streaming and digital media environments based on customer experience.
· Analysis of customer data
The workloads are based on:

· Video on demand as described by our gurus

· ~9:1 read/write

· very static content once deployed

· large transfer size (>64k, peak of distribution around 512K)

· reads are mostly random access (3:1 random to sequential)

· VDS workload: Video on demand as described by the redbook

· 9:1 read/write

· 128k/256k block size

· sequential access behavior

· VDA (above) workload as described by the CCTV studies in the redbook

· 40:60 read/write

· variable block size, dependent on application

· sequential access for writes, random for reads

· digital surveillance based on customer data

· ~1:9 read/write

· 1 MiB

· sequential access for writes, random for reads.
VDS workload attributes
	Op type
	Percent of mix

	Seq Read
	65

	Mmap read
	0

	Rand read
	19

	Seq write
	10

	Mmap write
	0

	Rand write
	1

	RMW
	0

	Mkdir
	1

	Create
	0

	Unlink
	0

	Append
	1

	Locking
	0

	Access
	1

	Stat
	1

	Chmod
	0

	Readdir
	1

	Copyfile
	0

	Rename
	0

	Statfs
	0

	Pathconf
	0

	Custom1
	0

	Custom2
	0

VDS I/O transfer size distributions

	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	0
	0
	1
	511
	0

	1
	512
	1023
	0
	1
	512
	1023
	0

	2
	1024
	2047
	0
	2
	1024
	2047
	0

	3
	2048
	4095
	0
	3
	2048
	4095
	0

	4
	4096
	4096
	0
	4
	4096
	4096
	0

	5
	4096
	8191
	0
	5
	4096
	8191
	0

	6
	8192
	8192
	0
	6
	8192
	8192
	0

	7
	8192
	16383
	0
	7
	8192
	16383
	0

	8
	16384
	16384
	0
	8
	16384
	16384
	0

	9
	16384
	32767
	0
	9
	16384
	32767
	0

	10
	32768
	32768
	0
	10
	32768
	32768
	5

	11
	65536
	65536
	15
	11
	65536
	65536
	10

	12
	131072
	131072
	 10
	12
	131072
	131072
	10

	13
	262144
	262144
	20
	13
	262144
	262144
	25

	14
	524288
	524288
	35
	14
	524288
	524288
	25

	15
	1 MB
	1 MB
	20
	15
	1 MB
	1 MB
	25

VDS Additional attributes:

	Other Attributes
	Value

	Percent write commit
	0

	Percent O_Direct
	0

	Percent O_SYNC
	0

	Percent Geometric
	0

	Percent Compressible
	0

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS type
	POSIX

VDI workload attributes

The VDI workload object was tuned from traces collected on systems running
the VSI login suite on both Hyper-V, and VmWare.
VDI workload attributes

	Op type
	Percent of mix

	Seq Read
	5

	Mmap read
	0

	Rand read
	35

	Seq write
	5

	Mmap write
	0

	Rand write
	55

	RMW
	0

	Mkdir
	0

	Create
	0

	Unlink
	0

	Append
	0

	Locking
	0

	Access
	0

	Stat
	0

	Chmod
	0

	Readdir
	0

	Copyfile
	0

	Rename
	0

	Statfs
	0

	Pathconf
	0

	Custom1
	0

	Custom2
	0

VDI I/O transfer size distributions

	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	0
	0
	1
	511
	2

	1
	512
	1023
	0
	1
	512
	1023
	2

	2
	1024
	2047
	0
	2
	1024
	2047
	1

	3
	2048
	4095
	0
	3
	2048
	4095
	1

	4
	4096
	4096
	0
	4
	4096
	4096
	32

	5
	4096
	8191
	10
	5
	4096
	8191
	2

	6
	8192
	8192
	2
	6
	8192
	8192
	45

	7
	8192
	16383
	2
	7
	8192
	16383
	4

	8
	16384
	16384
	43
	8
	16384
	16384
	6

	9
	16384
	32767
	2
	9
	16384
	32767
	 5

	10
	32768
	32768
	33
	10
	32768
	32768
	0

	11
	65536
	65536
	5
	11
	65536
	65536
	0

	12
	98304
	98304
	3
	12
	98304
	98304
	0

	13
	65536
	131072
	0
	13
	131072
	131073
	0

	14
	262144
	262144
	0
	14
	262144
	262144
	0

	15
	524288
	524288
	0
	15
	524288
	524288
	0

VDI Additional attributes:

	Other Attributes
	Value

	Percent write commit
	100

	Percent O_Direct
	0

	Percent O_SYNC
	0

	Percent Geometric
	0

	Percent Compressible
	30

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS type
	POSIX

METADATA workload attributes (Freeware version only)

The METADATA workload object was derived from the existing METADATA benchmark. This workload presents a similar load on the system under test as the original METADATA benchmark from SPEC. The results are not comparable with the original METADATA because the client is now participating and may alter the activity that the SUT will incur.
METADATA workload attributes

	Op type
	Percent of mix

	Seq Read
	10

	Mmap read
	0

	Rand read
	8

	Seq write
	7

	Mmap write
	0

	Rand write
	2

	RMW
	1

	Mkdir
	2

	Create
	2

	Unlink
	2

	Append
	3

	Locking
	6

	Access
	24

	Stat
	26

	Chmod
	2

	Readdir
	4

	Copyfile
	0

	Rename
	0

	Statfs
	1

	Pathconf
	0

	Custom1
	0

	Custom2
	0

METADATA I/O transfer size distributions

	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	3
	0
	1
	511
	13

	1
	512
	1023
	1
	1
	512
	1023
	3

	2
	1024
	2047
	2
	2
	1024
	2047
	7

	3
	2048
	4095
	1
	3
	2048
	4095
	5

	4
	4096
	4096
	16
	4
	4096
	4096
	11

	5
	4096
	8191
	6
	5
	4096
	8191
	3

	6
	8192
	8192
	36
	6
	8192
	8192
	30

	7
	8192
	16383
	7
	7
	8192
	16383
	7

	8
	16384
	16384
	7
	8
	16384
	16384
	5

	9
	16384
	32767
	2
	9
	16384
	32767
	1

	10
	32768
	32768
	9
	10
	32768
	32768
	6

	11
	65536
	65536
	4
	11
	65536
	65536
	4

	12
	98304
	98304
	3
	12
	98304
	98304
	2

	13
	65536
	131072
	2
	13
	131072
	131073
	2

	14
	262144
	262144
	1
	14
	262144
	262144
	1

	15
	524288
	524288
	0
	15
	524288
	524288
	0

METADATA Additional attributes:

	Other Attributes
	Value

	Percent write commit
	33

	Percent O_Direct
	0

	Percent O_SYNC
	0

	Percent Geometric
	10

	Percent Compressible
	0

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS Type
	POSIX

BACKUP workload attributes (Freeware version only)

The BACKUP workload object was conceptually created from casual observations and speculations. This workload needs to have real traces, or be removed from the set of supported workload objects.
BACKUP workload attributes

	Op type
	Percent of mix

	Seq Read
	9

	Mmap read
	0

	Rand read
	9

	Seq write
	7

	Mmap write
	0

	Rand write
	2

	RMW
	1

	Mkdir
	2

	Create
	2

	Unlink
	2

	Append
	3

	Locking
	6

	Access
	24

	Stat
	26

	Chmod
	2

	Readdir
	4

	Copyfile
	0

	Rename
	0

	Statfs
	1

	Pathconf
	0

	Custom1
	0

	Custom2
	0

BACKUP I/O transfer size distributions

	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	3
	0
	1
	511
	13

	1
	512
	1023
	1
	1
	512
	1023
	3

	2
	1024
	2047
	2
	2
	1024
	2047
	7

	3
	2048
	4095
	1
	3
	2048
	4095
	5

	4
	4096
	4096
	6
	4
	4096
	4096
	11

	5
	4096
	8191
	6
	5
	4096
	8191
	3

	6
	8192
	8192
	16
	6
	8192
	8192
	0

	7
	8192
	16383
	7
	7
	8192
	16383
	7

	8
	16384
	16384
	37
	8
	16384
	16384
	35

	9
	16384
	32767
	2
	9
	16384
	32767
	1

	10
	32768
	32768
	9
	10
	32768
	32768
	6

	11
	65536
	65536
	4
	11
	65536
	65536
	4

	12
	98304
	98304
	3
	12
	98304
	98304
	2

	13
	65536
	131072
	2
	13
	131072
	131073
	2

	14
	262144
	262144
	1
	14
	262144
	262144
	1

	15
	524288
	524288
	0
	15
	524288
	524288
	0

BACKUP Additional attributes:

	Other Attributes
	Value

	Percent write commit
	33

	Percent O_Direct
	0

	Percent O_SYNC
	0

	Percent Geometric
	0

	Percent Compressible
	30

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS Type
	POSIX

HOMEDIR workload attributes (Freeware version only)

The HOMEDIR workload object will be tuned by inputs from Microsoft and their work with FSCT and studies done on the Information worker. The current values are just place holders until this work is complete.
HOMEDIR workload attributes

	Op type
	Percent of mix

	Seq Read
	8

	Mmap read
	0

	Rand read
	10

	Seq write
	7

	Mmap write
	0

	Rand write
	2

	RMW
	1

	Mkdir
	2

	Create
	2

	Unlink
	2

	Append
	3

	Locking
	6

	Access
	18

	Stat
	20

	Chmod
	3

	Readdir
	5

	Copyfile
	10

	Rename
	0

	Statfs
	1

	Pathconf
	0

	Custom1
	0

	Custom2
	0

HOMEDIR I/O transfer size distributions

	Read I/O slot number
	Min bytes
	Max bytes
	Percent
	Write I/O slot
	Min bytes
	Max bytes
	Percent

	0
	1
	511
	3
	0
	1
	511
	13

	1
	512
	1023
	1
	1
	512
	1023
	3

	2
	1024
	2047
	2
	2
	1024
	2047
	7

	3
	2048
	4095
	1
	3
	2048
	4095
	5

	4
	4096
	4096
	16
	4
	4096
	4096
	11

	5
	4096
	8191
	6
	5
	4096
	8191
	3

	6
	8192
	8192
	36
	6
	8192
	8192
	30

	7
	8192
	16383
	7
	7
	8192
	16383
	7

	8
	16384
	16384
	7
	8
	16384
	16384
	5

	9
	16384
	32767
	2
	9
	16384
	32767
	1

	10
	32768
	32768
	9
	10
	32768
	32768
	6

	11
	65536
	65536
	4
	11
	65536
	65536
	4

	12
	98304
	98304
	3
	12
	98304
	98304
	2

	13
	65536
	131072
	2
	13
	131072
	131073
	2

	14
	262144
	262144
	1
	14
	262144
	262144
	1

	15
	524288
	524288
	0
	15
	524288
	524288
	0

HOMEDIR Additional attributes:

	Other Attributes
	Value

	Percent write commit
	33

	Percent O_Direct
	0

	Percent O_SYNC
	0

	Percent Geometric
	10

	Percent Compressible
	30

	Background flag
	0

	Sharemode flag
	0

	Rand Dist behavior
	0 (uniform random)

	FS Type
	POSIX

Internal request op type to file buckets: (File selection & candidate files)
Bucket#
OP_TYPE

File buckets available to this OP type

--

0
OP_WRITE:

Bucket0, Bucket2 (sequential readers & writers)

1
OP_WRITE_FILE:
Bucket1, Bucket3 (sequential rw whole file)

2
OP_READ:

Bucket0, Bucket2 (sequential readers & writers)

3
OP_READ_FILE:
Bucket1, Bucket3 (sequential rw whole file)

4
OP_WRITE_RAND:
Bucket4, Bucket5 (random readers & writers)

5
OP_READ_RAND:
Bucket4, Bucket5 (random readers & writers)

6
OP_RMW:
Bucket4, Bucket5 (rmw at random location)

Bucket6

7
OP_MKDIR:
Bucket7

8
OP_UNLINK:
Bucket8

9
OP_STAT:

Bucket0, Bucket1, Bucket2, Bucket3,

Bucket4, Bucket5, Bucket6, Bucket9

Bucket10, Bucket11, Bucket12, Bucket13,

Bucket14, Bucket15, Bucket16, Bucket17,

Bucket18, Bucket19, Bucket20

10
OP_APPEND:
Bucket10

11
OP_LOCKING:
Bucket11

12
OP_ACCESS:
Bucket0, Bucket1, Bucket2, Bucket3,

Bucket4, Bucket5, Bucket6, Bucket9

Bucket10, Bucket11, Bucket12, Bucket13,

Bucket14, Bucket15, Bucket16, Bucket17,

Bucket18, Bucket19, Bucket20.

13
OP_CHMOD:
Bucket0, Bucket1, Bucket2, Bucket3,

Bucket4, Bucket5, Bucket6, Bucket9

Bucket10, Bucket11, Bucket12, Bucket13,

Bucket14, Bucket15, Bucket16, Bucket17,

Bucket18, Bucket19, Bucket20.

14
OP_READDIR:
Bucket0, Bucket1, Bucket2, Bucket3,

Bucket4, Bucket5, Bucket6, Bucket9

Bucket10, Bucket11, Bucket12, Bucket13,

Bucket14, Bucket15, Bucket16, Bucket17,

Bucket18, Bucket19, Bucket20

15
OP_MM_WRITE:
Bucket15, Bucket16 (rw mmap)

16
OP_MM_READ:
Bucket15, Bucket16 (rw mmap)

17
OP_COPYFILE:
Bucket17

18
OP_RENAME:
Bucket18

19
OP_STATFS:
Bucket0, Bucket1, Bucket2, Bucket3,

Bucket4, Bucket5, Bucket6, Bucket9

Bucket10, Bucket11, Bucket12, Bucket13,

Bucket14, Bucket15, Bucket16, Bucket17,

Bucket18, Bucket19, Bucket20.

20
OP_PATHCONF:
Bucket0, Bucket1, Bucket2, Bucket3,

Bucket4, Bucket5, Bucket6, Bucket9

Bucket10, Bucket11, Bucket12, Bucket13,

Bucket14, Bucket15, Bucket16, Bucket17,

Bucket18, Bucket19, Bucket20

21
OP_CUSTOM1:
Bucket21

22
OP_CUSTOM2:
Bucket22

23

OP_UNLINK:
Bucket23
Using the native Windows version:

· Install the Netmist kit.

· Create the Netmist configuration file:

Example: “clients”

Clientname=nv8 Username=DOMAIN\administrator Workdir=\\filer\volume Execpath=C:\Users\Administrator.DOMAIN\netmist_pro\netmist Workload=METADATA
Password=my_password

Clientname=nv6 Username=DOMAIN\administrator Workdir=\\filer\volume Execpath=C:\Users\Administrator.DOMAIN\netmist_pro\netmist Workload=METADATA
Password=my_password

· Create the top level script to start the entire Netmist run:
Example: netmist_script.bat

./netmist -b 1g -b 1g -d 1 -g clients

· Enable DCOM on the Windows clients.
See: http://technet.microsoft.com/en-us/library/cc771387.aspx

· Be sure that you install the Visual C runtime.
See: http://www.microsoft.com/en-us/download/details.aspx?id=5555
· Please go through *ALL* of the power management features on every client and disable these, as they may have huge impacts on the performance measurements. You really do want the clients set in High Performance mode for every power managed feature.
Linux setup for Netmist.

· /etc/sysctl.conf:
 # Increase max socket connections

 net.core.somaxconn = 65536

 net.ipv4.tcp_fin_timeout = 5

· /etc/hosts.allow
 sshd: ALL
· Create ssh passwords from all clients to all other clients, so that no
 password challenges will be needed for the testing.
· Mount all filesystems that will be used in the testing.
· Disable selinx (as this app needs to connect TCP sockets to all clients)

· Disable iptables. (as this app needs to connect TCP sockets to all clients)
· If you need to control the amount of RAM used by the system you can use the
 mem=xx[kmKM] boot options to set the amount of RAM that the system can use.
· One may wish to increase the maximum number of open file descriptors per use to
a large value. This will reduce the number of opens and closes that are needed to
access the files in the benchmark.
· Install the Netmist kit.
· Create the Netmist configuration file:

Example: “clients”

Clientname=nv8 Username=spec Workdir=/testdir Execpath=/tmp/netmist Workload=METADATA
Clientname=nv6 Username=spec Workdir=/testdir Execpath=/tmp/netmist Workload=METADATA

· Create the top level script to start the entire Netmist run:
Example: netmist_script.sh

./netmist -b 1g -b 1g -d 1 -g clients –K –N –G

· Please go through *ALL* of the power management features on every client and disable these, as they may have huge impacts on the performance measurements. You really do want the clients set in High Performance mode for every power managed feature.
Internal data structures and design information.
Below is a drawing of the socket based communication mechanism that is used for command and control of all of the remote clients. It also outlines the basic state transitions of each of the members of the test.

[image: image28.jpg]
�

 Netmist

 Networked Maximum I/O Sustained

 Throughput

 Netmist User’s Guide

Don Capps�Iozone.org

Created: March 1st, 2002

Ongoing development: 2014

