lozone Filesystem Benchmark

I0zone is a filesystem benchmark tool. The benchngarkerates and measures a variety of file operations.
lozone has been ported to many machines and runs underoparsting systems. This document will
cover the many different types of operations that areeteas well as coverage of all of the command line
options.

lozone is useful for determining a broad filesystem gsialof a vendor’s computer platform. The
benchmark tests file /0O performance for the follogioperations.

Read, write, re-read, re-write, read backwards, read strideghd, fwrite, random read/write,
pread/pwrite variants, aio_read, aio_write, mmap,

While computers are typically purchased with an applicatiomind it is also likely that over time the
application mix will change. Many vendors have enhanced thrating systems to perform well for
some frequently used applications. Although this acctderthe 1/O for those few applications it is also
likely that the system may not perform well for ottegplications that were not targeted by the operating
system. An example of this type of enhancement is: Dagldany operating systems have tested and
tuned the filesystem so it works well with databad#bile the database users are happy, the other users
may not be so happy as the entire system may be givirag the system resources to the database users at
the expense of all other users. As time rolls onghgtem administrator may decide that a few more office
automation tasks could be shifted to this machine. Thd lnay now shift from a random reader
application (database) to a sequential reader. The usgrsliscover that the machine is very slow when
running this new application and become dissatisfied withdecision to purchase this platform. By using
lozone to get a broad filesystem performance coveragétilyer is much more likely to see any hot or cold
spots and pick a platform and operating system that ismail balanced.

Features:
* ANSII ‘C’ source.
* POSIX async I/O.
* Mmap() file I/O.
* Normal file I/O.
e Single stream measurement.
e Multiple stream measurement.
e POSIX pthreads.
e Multi-process measurement.
« Excel importable output for graph generation.
e 1/O Latency data for plots.
e 64-bit compatible source.
» Large file compatible.
« Stonewalling in throughput tests to eliminate straggfézcts.
« Processor cache size configurable.
e Selectable measurements with fsync, O_SYNC.
» Options targeted for testing over NFS.

Building I0zone

Once you have obtained the source for I0zone you shuave 12 files.
e iozone.c (source code)

e libasync.c (source code)

« makefile (makefile)

e libbif.c (source code)

e lozone_msword_98.doc (documentation in Word format)

e iozone.l (documentation in nroff format)

e gnuplot.dem (sample gnuplot file)

* gnuplotps.dem (sample gnuplot file that generates postsuriptit)
* read_telemetry (sample file for read telemetry file)

« write_telemetry (sample file for write telemetryéijl

e Run_rules.doc (run rules to get reasonable results)

e Changes.txt (log of changes to lozone since its beginning)

Type: make

The makefile will display a list of supported platformsclethe one that matches your
configuration and then type: make target

That’s it. You're done. There is no need to have arstafi procedures as 10zone creates all of its
files in the current working directory. Just copy lozotm wherever you wish to test the filesystem
performance and then run it. Or you can use-theommand line option to specify a target path,
for example, a path/filename in a new filesystem.

Before you run lozone please read the run rules at the bottm of this document.

Examples of running lozone:
The simplest way to get started is to try the automatode.
lozone —a
If you wish to generate graphs then you may wish to on Excel mode.
lozone —Ra (Output can be imped using space and tab delimited)
Iozt?rr]e —Rab output.wks (Output file “output.wks” is a bipnéormat spreadsheet)
If you have more than 512 Mbytes of memory then you needdrease the maximum file size to
a larger value. For example if your system has 1 Gbytmmemory then you would want to try something
ke lozone —Ra —g 2G

If you only care about read/write and do not wish torgpehe time to perform all of the tests, then
you may wish to limit the testing like:

lozone-Ra-g2G—-i0-il
If you are running lozone over NFS on an NFS clientitlyeu may wish to use:
lozone —Rac
This tells lozone to include the close() in the m@asnent. This may be needed if the client is

running NFS version 3. Including the close() helps to redheeclient side cache effects of NFS version 3.
If you use a file size that is larger than the amount efnory in the client then the ‘c’ flag is not needed.

Definitions of the tests

Write : This test measures the performance of writing a fiewWhen a new file is written not
only does the data need to be stored but also the ovéiihfEamation for keeping track of where the data
is located on the storage media. This overhead is ctiletmetadata” It consists of the directory
information, the space allocation and any other datmeiated with a file that is not part of the data
contained in the file. It is normal for the initiarite performance to be lower than the performanceeef r
writing a file due to this overhead information.

Re-write: This test measures the performance of writindetfiat already exists. When a file is
written that already exists the work required is leshashetadata already exists. It is normal for the
rewrite performance to be higher than the performarieeibing a new file.

Read This test measures the performance of reading atirgisle.

Re-Read This test measures the performance of reading @hfdéwas recently read. It is normal
for the performance to be higher as the operating sygtenerally maintains a cache of the data for files
that were recently read. This cache can be used tdyset&ds and improves the performance.

Random Read This test measures the performance of readingeanfiith accesses being made to
random locations within the file. The performance ofyatem under this type of activity can be impacted
by several factors such as: Size of operating systentlsegganumber of disks, seek latencies, and others.

Random Write: This test measures the performance of writingeiith accesses being made to
random locations within the file. Again the performamda system under this type of activity can be
impacted by several factors such as: Size of operatisigsys cache, number of disks, seek latencies, and
others.

Random Mix: This test measures the performance of reading anihgré file with accesses
being made to random locations within the file. Again pgeeformance of a system under this type of
activity can be impacted by several factors such a® 8ioperating system’s cache, number of disks, seek
latencies, and others. This test is only availabléaroughput mode. Each thread/process runs either the
read or the write test. The distribution of read/wig&lone on a round robin basis. More than one
thread/process is required for proper operation.

Backwards Read This test measures the performance of readingeafickwards. This may
seem like a strange way to read a file but in factéhare applications that do this. MSC Nastran is an
example of an application that reads its files backwavdith MSC Nastran, these files are very large
(Gbytes to Thytes in size). Although many operatingtesns have special features that enable them to
read a file forward more rapidly, there are very feperating systems that detect and enhance the
performance of reading a file backwards.

Record Rewrite: This test measures the performance of writing andmniéng a particular spot
within a file. This hot spot can have very interestindnaeiors. If the size of the spot is small enough to fi
in the CPU data cache then the performance is vagly.Hf the size of the spot is bigger than the CPU data
cache but still fits in the TLB then one gets a diffat level of performance. If the size of the spotagger
than the CPU data cache and larger than the TLB buffitsilin the operating system cache then one gets
another level of performance, and if the size of thetss bigger than the operating system cache then one
gets yet another level of performance.

Strided Read This test measures the performance of reading avile a strided access
behavior. An example would be: Read at offset zero flanagth of 4 Kbytes, then seek 200 Kbytes, and
then read for a length of 4 Kbytes, then seek 200 Kbytessaon. Here the pattern is to read 4 Kbytes and
then

Seek 200 Kbytes and repeat the pattern. This again is a tgppdication behavior for applications that
have data structures contained within a file and is acegssparticular region of the data structure.
Most operating systems do not detect this behavior ptément any techniques to enhance the
performance under this type of access behavior.

This access behavior can also sometimes produce ititey@erformance anomalies. An example would
be if the application’s stride causes a particular dislkg striped file system, to become the bottleneck.

Fwrite: This test measures the performance of writingedsing the library function fwrite().
This is a library routine that performs buffered writgepations. The buffer is within the user’s address
space. If an application were to write in very smatlestransfers then the buffered & blocked 1/0
functionality of fwrite() can enhance the performancehaf aipplication by reducing the number of actual
operating system calls and increasing the size of #resters when operating system calls are made.
This test is writing a new file so again the overheathef metadata is included in the measurement.

Frewrite: This test measures the performance of writingeadsing the library function fwrite().
This is a library routine that performs buffered & blatk write operations. The buffer is within the user’s
address space. If an application were to write in vengk size transfers then the buffered & blocked I/O
functionality of fwrite() can enhance the performancehaf aipplication by reducing the number of actual
operating system calls and increasing the size of #resters when operating system calls are made.
This test is writing to an existing file so the performarshould be higher as there are no metadata
operations required.

Fread: This test measures the performance of readingeaiing the library function fread(). This
is a library routine that performs buffered & blocked regmtrations. The buffer is within the user’s
address space. If an application were to read in velissize transfers then the buffered & blocked 1/0
functionality of fread() can enhance the performance efapplication by reducing the number of actual
operating system calls and increasing the size of #resters when operating system calls are made.

Freread: This test is the same as fread above except that indktghe file that is being read was
read in the recent past. This should result in highergoerénce as the operating system is likely to have
the file data in cache.

Specialized tests:

Mmap: Many operating systems support the use of mmap() toarfdp into a user’'s address
space. Once this mapping is in place then stores todbéatibn in memory will result in the data being
stored going to a file. This is handy if an application véstto treat files as chunks of memory. An example
would be to have an array in memory that is also benmajntained as a file in the files system.

The semantics of mmap files is somewhat different thammal files. If a store to the memory location is
done then no actual file I/O may occur immediately. Tise of the msyc() with the flags MS_SYNC, and
MS_ASYNC control the coherency of the memory andftlee A call to msync() with MS_SYNC wiill
force the contents of memory to the file and waititco be on storage before returning to the applicatio
A call to msync() with the flag MS_ASYNC tells the oging system to flush the memory out to storage
using an asynchronous mechanism so that the applicatiometay into execution without waiting for the
data to be written to storage.

This test measures the performance of using the nrmagchanism for performing 1/0.

Async I/O: Another mechanism that is supported by many operatingregster performing I/O
is POSIX async I/O. The application uses the POSBfidard async I/O interfaces to accomplish this.
Example: aio_write(), aio_read(), aio_error(). This testsures the performance of the POSIX async I/O
mechanism.

Command Line options:

The following is the output from the built in help. Eactimn’s purpose is explained in this section of the

manual.

Usage: iozone [-s filesize_Kb] [-r record_size_Kb][path]filename]
[-itest] [-E] [-p] [-a] [-A] [-] [-Z] [-m] [-M] [- t children] [-h] [-0]
[l min_number_procs] [-u max_number_procs] [-v] [-R][-x
[-d microseconds] [-F pathl path2...] [-V pattern] [-jid#]
[-T1[-C] [-B] [-D] [-G] [-1] [-H depth] [-k depth] [-U mount_point]
[-S cache_size] [-O] [-K] [-L line_size] [-g max_filese_Kb]
[-n min_filesize_Kb] [-N] [-Q] [-P start_cpu] [-c] [-e]{b filename]
[-J milliseconds] [-X filename] [-Y filename] [-w] W]
[-y min_recordsize_Kb] [-g max_recordsize_Kb] [-+m fileng]
[-+u][-+d][-+p percent_read] [-+r] [-+t] [-+A #]

What do they all mean ?

-a
Used to select full automatic mode. Produces output thatrs@lktested file operations
for record sizes of 4k to 16M for file sizes of 64k to 512M.

-A
This version of automatic mode provides more coveragedsumes a bunch of time.
The—aoption will automatically stop using transfer sizesdéhan 64k once the file
size is 32 MB or larger. This saves time. Th& option tells lozone that you are willing to
wait and want dense coverage for small transfers evesniiie file size is very large.
NOTE: This option is deprecated in lozone version 3.61. t&e—i 0 —i linstead.

-b filename
lozone will create a binary file format file in Excebmpatible output of results.

-B
Use mmap() files. This causes all of the temporamsfibeing measured to be created
and accessed with the mmap() interface. Some applicaficefer to treat files as arrays
of memory. These applications mmap() the file andhtjust access the array with loads
and stores to perform file 1/O.

-C
Include close() in the timing calculations. This is fusenly if you suspect that close() is
broken in the operating system currently under test.ntlmuseful for NFS Version 3
testing as well to help identify if the nfs3_commit i®rking well.

-C
Show bytes transferred by each child in throughput testisgfl if your operating
system has any starvation problems in file I/O or ingess management.

-d#
Microsecond delay out of barrier. During the throughpsts$ all threads or processes are
forced to a barrier before beginning the test. Normaillyof the threads or processes are
released at the same moment. This option allows owleliay a specified time in
microseconds between releasing each of the processeseads.

-D
Use msync(MS_ASYNC) on mmap files. This tells the opiagasystem that all the data in

the mmap space needs to be written to disk asynchropousl

-e
Include flush (fsync,fflush) in the timing calculations

-E
Used to select the extension tests. Only availableoomesplatforms. Uses pread interfaces.

-f filename
Used to specify the filename for the temporary file unigst. This is useful when
the unmount option is used. When testing with unmount betwess it is necessary for
the temporary file under test to be in a directory thert e unmounted. It is not possible
to unmount the current working directory as the pssczone is running in this directory.

-F filename filename filename ...
Specify each of the temporary file names to be usetiéthroughput testing. The number
of names should be equal to the number of processdseads that are specified.

_g #
Set maximum file size (in Kbytes) for auto mode.

-G
Use msync(MS_SYNC) on mmap files. This tells the opgagasystem that all the data in the
mmap space needs to be written to disk synchronously.

-h
Displays help screen.

-H #
Use POSIX async I/O witi async operations. lozone will use POSIX async I/ithwa
bcopy from the async buffers back into the applicasibuffer. Some versions of MSC
NASTRAN perform 1/O this way. This technique is used by égations so that the async
I/0 may be performed in a library and requires no chartgehe applications internal model.

-i#
Used to specify which tests to run. (O=write/rewriterdad/re-read, 2=random-read/write
3=Read-backwards, 4=Re-write-record, 5=stride-read, Gtefine-fwrite, 7=fread/Re-fread,
8=random mix, 9=pwrite/Re-pwrite, 10=pread/Re-pread, 11=pwRtpwritev, 12=preadv/Re-
preadv).
One will always need to specify 0 so that any of thédaing tests will have a file to measure.
-i # -i # -i #is also supported so that one may select more than she te

-l
Use VXFS VX_DIRECT for all file operations. Tells théXFS filesystem that all operations
to the file are to bypass the buffer cache and go diyectdisk.

_j #
Set stride of file accesses to (# * record size). $trle read test will read records at this stride.
-J # (in milliseconds)

Perform a compute delay of this many milliseconds beéaeh I/O operation. See also
-X and-Y for other options to control compute delay.

-k #
Use POSIX async I/0O (no bcopy) withasync operations. lozone will use POSIX async
I/0 and will not perform any extra bcopys. The buffeied by lozone will be handed to
the async I/O system call directly.

-K
Generate some random accesses during the normal testing.

-l #
Set the lower limit on number of processes to run. Whening throughput tests this
option allows the user to specify the least number otpsses or threads to start. This
option should be used in conjunction with theoption.

-L#
Set processor cache line size to value (in bytes)sTetone the processor cache line size.
This is used internally to help speed up the test.

-m
Tells lozone to use multiple buffers internally. Sonppkcations read into a single
buffer over and over. Others have an array of buffélgs option allows both types of
applications to be simulated. lozone’s default behaigoo re-use internal buffers.
This option allows one to override the default and to nmdtiple internal buffers.

-M
lozone will call uname() and will put the string ingloutput file.

-n#
Set minimum file size (in Kbytes) for auto mode.

-N
Report results in microseconds per operation.

-0
Writes are synchronously written to disk. (O_SYNC).doe will open the files with the
O_SYNC flag. This forces all writes to the file to gorapletely to disk before returning to
the benchmark.

-0
Give results in operations per second.

-p
This purges the processor cache before each file aperédzone will allocate another
internal buffer that is aligned to the same processmhe boundary and is of a size that
matches the processor cache. It will zero fill talternate buffer before beginning each test.
This will purge the processor cache and allow onsde the memory subsystem without
the acceleration due to the processor cache.

-P#
Bind processes/threads to processors, starting wisrcpu#. Only available on some
platforms. The first sub process or thread will begintloe specified processor. Future processes
or threads will be placed on the next processor. Oncéattaénumber of cpus is exceeded then
future processes or threads will be placed in a rounthrfashion.

_q #
Set maximum record size (in Kbytes) for auto mode. @ also specify
-q #k (size in Kbytes) orq #m (size in Mbytes) orq #g (size in Gbytes).
See-y for setting minimum record size.

Q
Create offset/latency files. lozone will creategiaty versus offset data files that can be
imported with a graphics package and plotted. This isuldef finding if certain offsets
have very high latencies. Such as the point where UFSalldicate its first indirect block.
One can see from the data the impacts of the extentatilons for extent based filesystems
with this option.

-r#
Used to specify the record size, in Kbytes, to test. Oy also specify
-r #k (size in Kbytes) orr #m (size in Mbytes) orr #g (size in Gbytes).

-R
Generate Excel report. lozone will generate an Excelgatible report to standard out. This
file may be imported with Microsoft Excel (space delintij@nd used to create a graph of
the filesystem performance. Note: The 3D graphs aheron oriented. You will need to
select this when graphing as the default in Excel is ooiented data.

-S#
Used to specify the size, in Kbytes, of the file to t&3he may also specify
-s #k (size in Kbytes) ors #m(size in Mbytes) ors #g(size in Gbytes).

-S#
Set processor cache size to value (in Kbytes). Thiis kezone the size of the processor cache.
It is used internally for buffer alignment and for therge functionality.

-t#
Run lozone in a throughput mode. This option allows the tsepecify how
many threads or processes to have active during theunement.

-T
Use POSIX pthreads for throughput tests. Available on @iaté that have POSIX threads.

-u#
Set the upper limit on number of processes to run. Wiening throughput tests this
option allows the user to specify the greatest nundb@rocesses or threads to start.
This option should be used in conjunction with theption.

-U mountpoint
Mount point to unmount and remount between tests. lozah@mmount and remount
this mount point before beginning each test. This guarantegshe buffer cache does not
contain any of the file under test.

-V
Display the version of lozone.

-V #
Specify a pattern that is to be written to the temppfde and validated for accuracy in
each of the read tests.

-w
Do not unlink temporary files when finished using them. Le#tvem present in the filesystem.

-w
Lock files when reading or writing.

Turn off stone-walling. Stonewalling is a technique usedrinally to lozone. It is used during
the throughput tests. The code starts all threads oepsas and then stops them on a barrier.
Once they are all ready to start then they areed#ased at the same time. The moment that
any of the threads or processes finish their work theretfitire test is terminated and
throughput is calculated on the total I/0 that was completetbuipis point. This ensures

that the entire measurement was taken while all opttogesses or threads were running

in parallel. This flag allows one to turn off the stewalling and see what happens.

-X filename
Use this file for write telemetry information. Thae contains triplets of information:
Byte offset, size of transfer, compute delay in milliseds. This option is useful if one has
taken a system call trace of the application that i;t#rest. This allows lozone to replicate the
I/O operations that this specific application generated provide benchmark results for this file
behavior. (if column 1 contains # then the line iscerenent)

_y #
Set minimum record size (in Kbytes) for auto mode. Ong alao specify
-y #k (size in Kbytes) ory #m (size in Mbytes) ory #g (size in Gbytes).
See—(for setting maximum record size.

-Y filename
Use this file for read telemetry information. Thesfitontains triplets of information:
Byte offset, size of transfer, compute delay in millieeds. This option is useful if one has
taken a system call trace of the application that i;t#rest. This allows lozone to replicate the
I/O operations that this specific application generated provide benchmark results for this file
behavior. (if column 1 contains # then the line ismanment)

-z
Used in conjunction witha to test all possible record sizes. Normally lozameits testing
of small record sizes for very large files when useduthdutomatic mode. This option forces
lozone to include the small record sizes in the autieriasts also.

-Z
Enable mixing mmap 1/O and file I/O.

-+m filename
Use this file to obtain the configuration informationtbg clients for cluster testing. The file
contains one line for each client. Each line has tliields. The fields are space delimited. A #
sign in column zero is a comment line. The first fieddhe name of the client. The second field is
the path, on the client, for the working directory whéweone will execute. The third field is the
path, on the client, for the executable lozone.
To use this option one must be able to execute commandseatiients without being challenged
for a password. lozone will start remote executiorubing “rsh”.

-+Uu
Enable CPU utilization mode.

-+d
Enable diagnostic mode. In this mode every byte is vadidathis is handy if one suspects a
broken I/O subsystem.

-+p percent_read
Set the percentage of the thread/processes that witinp@erandom read testing. Only valid in
throughput mode and with more than 1 process/thread.

-+r
Enable O_RSYNC and O_SYNC for all I/O testing.

-+t
Enable network performance test. Requires -+m

-+A
Enable madvise. 0 = normal, 1=random, 2=sequential, 3ndext 4=willneed.
For use with options that activate mmap() file /0eSeB

What can | see:

The following are some graphs that were generated ftmmozone output files.

CPU cache effect

Read performance

Buffer cache effect

W 500000-320000
W 280000-300000
W 260000-250000
| 240000-260000
0220000-240000
0200000-220000
W 150000-200000
m 160000-150000
0 140000-160000
W 120000-140000
O 100000-120000
W 50000-100000

kB/sec

B
lelll-mll'....""l
by, M
A A i '|Il"_

A
40000 EWA

! ammAant o2
20000 (. 1 OB0000-50000
0 -“—1---:’-- "‘ . 040000-50000
- ¥ § m 20000-40000
- m0-20000
Not measured B file % = p_— .
2 8 - © KB record performance after
-) E - caches are exceeded
[Lu]
[

From the graph above one can clearly see the buffdrechelping out for file sizes that are less than
256MB but after that the actual disk I/O speed can be s&kso.note that the processor cache effects can

be seen for file sizes of 16 Kbytes to 1Mbyte.

Re-read performance
CPU cache effect

900000 ||
50000 :__,_________EA Buffer cache effect
800000 ' T T T
750000 i:zrf_a_%ﬁ_‘““ﬁ 0350000-300000
700000 & T T T @:300000-850000
B50000 gy e N I m 750000-800000
600000 =TT 1] 8 700000-750000
550000 T] m650000-700000
\Blsoc iggggg :::E:::EH m 00000-650000
400000 hha:““mﬂz““ m550000-600000
280000 SNy Ny O500000-550000
300000 :““Ha Z-~ ® 450000-500000
250000 Nhp <N m400000-450000
200000 -7 ©350000-400000
150000 m 300000-350000
100000 | 250000-300000
SDDDE m200000-250000
_ 0150000-200000
I - 0100000150000
Not measured w 2 1 T8 @ m50000-100000
g i @ = m0-50000
kB file S @ + &7 kB record
£ . e ©
5 = = 1/0 performance after
& caches are exceeded

The graph above is displaying the impact of re-readifigpaNotice that the processor cache is now very
important and causes the sharp peak. The next platdhe tight is buffer cache and finally above 256 MB
the file no longer fits in the buffer cache and realnsite speeds can be seen.

300000
250000

20000011

|~
KBisec 1SDDDDJ/

1000004/

50000 -

Read throughput scaling

B

Processes

O 250000-300000
W 200000-250000
00 150000-200000
01 100000-150000
W 50000-100000
O 0-50000

The graph above was created by running lozone multiplegiend then graphing the combination of the

results. Here the graph is showing the throughput perémce as a function of processes and number of
disks participating in a filesystem. (disk striping) Tgeod news is that on this system as one adds disks

the throughput increases. Not all platforms scale st.w

Re-write performance

CPU cache effect

: Buffer cache effect
300000 N
i:‘;zzz - m 270000-300000
210000 N W 240000-270000
KBicoc 120000 O 210000-240000
11223‘;3 H 180000-210000
90000 @ 150000-180000
ggggg m 120000-150000
5 [90000-120000
3 - O 60000-90000
Not measured = o § B 3000050000
o 0w =3 -
g g o 2 & = 0-30000
File size (KB} o -

262144

Req size (KB)

The graph above shows single stream performance wHerg£e and request size are changed. The place
on the lower right that touches the floor of the dnap not actual data. Excel graphs empty cells as
containing a zero. This run was taken with the —a optibane used the —A option then the area that was
not tested would have been tested and had real values.dllgrims is not a desirable area to test because
it is very time consuming to write a 512MB file in 4k trafer sizes. The —a option in lozone tells lozone to
discontinue use of transfer sizes less than 64k onceléhgife is 32MB or bigger. This saves quite a bit of
time. Notice the ridge that runs from the top leftthe lower right down the center of the graph. This is
where the request size fits in the processor cacloe file sizes less than the size of the processchea

you can see the rise in performance as well. When tiatile size and the transfer size is less than the
processor cache it rises even higher. Although irstérg to see, it is unlikely that you will be able get
applications to never write files that are bigger thlae processor cacleé However it might be possible to
get applications to try to re-use buffers and keep thedodize smaller than the processor cache size.

Read Performance

T CPU cache effect
320000 —— |

300000 | L]]
280000 T P Buffer cache effect
260000
240000
220000
200000
180000

| e m300000-320000
74_ﬂi T m 2A0000-300000
|| T4 W 250000-280000
- <]
]| m240000-260000
Bisec 160000 e ©220000-240000
. 0200000-220000
1 ggggg i ! 7] = 150000-200000
= m 160000-180000
100000 o 140000-160000
80000 = 120000-140000
F0000 @100000-120000
40000 m 30000100000
20000 DEO000-30000
u 040000-60000
= 20000-40000
@0-20000

T

G4
a4

256

4096

Not measured

1024

1024

40598
256

kB file

G4

kB record Anomaly #1

163
16

G5536

262144

Anomaly #2

The graph above is an example of a real system with soteeesting “optimizations”. Here one can see
that there are some file sizes and some record tim$ave very bad performance. Notice the
performance dip at record sizes of 128Kbytes. (Anomaly #19ré is also a dropoff for file sizes of 8 MB
and larger. The dropoff for files greater than 8MB iswarteresting since this machine has 16 GB of
memory and an 8GB buffer cache. This is a classic examifiuning for a specific application. If the poor
system administrator ever installs an application thedito read or write files in a record size of 128
Kbytes to 1 Mbyte his users will probably take him outkdor a conference. If the system would have
been characterized before it was purchased it wouldrrteasee made it into the building.

Another type of graph that can be produced is the LatenagtyrWhen the -Q option is used lozone will
generate four .dat files. Rol.dat, wol.dat, rwol.dat amdldat. These are read offset latency, writeseff
latency, rewrite offset latency and reread offsgehcy. These files can be imported into Excel and then
graphed.

The latency versus offset information is useful foriegef there are any particular offsets in a file that
have high latencies. These high latencies can be causaddnyety of causes. An example would be if the
file size is just a bit bigger than the buffer cache sitiee first time the file is written the latency Wbe

low for each transfer. This is because the writesgoing into the buffer cache and the application is
allowed to continue immediately. The second time theifi written the latencies will be very high. This is
due to the fact that the buffer cache is now completeallyof dirty data that must be written before the
buffer can be reused. The reason that this occurs wheiilghig bigger than the buffer cache is because the
write to the first block on the rewrite case will tiind the block in the buffer cache and will be forced to
clean a buffer before using it. The cleaning will take tiaral will cause a longer latency for the write to
complete. Another example is when the filesystem isinted from a remote machine. The latency graphs
can help to identify high latencies for files that di@ing accessed over the network. The following are a
few latency graphs for file /O over an NFS versiofil8system.

Microseconds

Microseconds

NFS3 Write latency (4k transfers)

20000

18000

16000

14000

12000

10000

2000

G000

4000

2000

0
L = I A s Y e o o s = S L o s s A AN = N Iy e L .~ S o B Y s = S SN I s S
m W o N @D m ™ W 0 g — = @ — = M~ O = I~ O M O O M w o o D m
— — — N N N 0 o= = = L W @ @ P M~ ~ O om0 O ®m G O
Offset in file

NFS3 Rewrite latency (4k transfers)
1000
800
800
700
600
500
400
300
200

100

Offset in file

NF$3 Read Latency (dk transfers)

266

096
8z6

968

¥a8

ZE8
oog

834
9EL

¥OL

249

U]

809

945

-+
-
y)

45

f]
[u}
=

w
==
-

ql¥

=+
oo
o

[}
Lo
o

[R]
[
[I)

o
Lo
&}

=
g
[}

6L

03l

8zl

ik
8

=+
o

P
Tt e
=Tl

o

9000

G000

7000

G000

5000
4000

SPUDIASOIINY

3000

2000

1000

a

Offset in the file

NFS3 Re-read latency (4k transfers)

40 q

35

30

Lo
&}

=
™

SPUDIASOIINY

18
10

266
036
a6
968
st
ZER
oos
83;
9L
jyurs
il
vy
805
945
Frs
8]
08y
ary
alr
FBE
758
0ze
88z
952
i
6l
o9l
azl
96

¥4

[

Offset in file

In the re-read latency graph one can clearly seelibeteside cache that is in NFS Version 3. The reread
latencies are clearly not the latencies that one doet if the reads actually went to the NFS server and
back.

Run rules:

If you wish to get accurate results for the entire ranfperformance for a platform you need to make sure
that the maximum file size that will be tested iger than the buffer cache. If you don't know how big the
buffer cache is, or if it is a dynamic buffer cacliren just set the maximum file size to be greater than th
total physical memory that is in the platform.
In general you should be able to see three or four plateaus.

File size fits in processor cache.

File size fits in buffer cache

File size is bigger than buffer cache.
You may see another plateau if the platform has a pyraad secondary processor caches. If you don't
see at least 3 plateaus then you probably have thermamifile size set too small. lozone will default to a
maximum file size of 512 Mbytes. This is generally suffict but for some very large systems you may
need to use the —g option to increase the maximumitie See the file Run_rules document in the
distribution for further information.

Source code availability

lozone is in public domain and its source is availdbtefree. One might consider using it before your
company purchases its next platform.

Additional notes on how to make the graphs

lozone sends Excel compatible output to standard ous ifiaiy be redirected to a file and then processed
with Excel. The normal output for lozone as well as Ereel portion are in the same output stream. So to
get the graphs one needs to scroll down to the Excéiquoof the file and graph the data in that section.
There are several sets of graph data. "Writer repgsmthe example. When importing the file be sure to tell
Excel to import with "delimited" and then click next, thetick on the "space delimited" button. To graph
the data just highlight the region containing the file sinel record size and then click on the graph wizard.
The type of graph used is "Surface". When the next didax pops up you need to select "Columns".
After that the rest should be straight forward.

Contributors: http://www.iozone.org
Original Author: William D. Norcott. wnorcott@us.atke.com
Features & extensions: Don Capps capps@iozone.org

